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Abstract

In this paper we establish the cover time of a random graph G(d) chosen uniformly at
random from the set of graphs with vertex set [n] and degree sequence d. We show that
under certain restrictions on d, the cover time of G(d) iswhp asymptotic to d−1

d−2
θ
dn log n.

Here θ is the average degree and d is the effective minimum degree.

1 Introduction

Let G = (V,E) be a connected graph with |V | = n vertices and |E| = m edges.

For a simple random walk Wv on G starting at a vertex v, let Cv be the expected time taken
to visit every vertex of G. The vertex cover time C(G) of G is defined as C(G) = maxv∈V Cv.
The vertex cover time of connected graphs has been extensively studied. It is a classic result
of Aleliunas, Karp, Lipton, Lovász and Rackoff [2] that C(G) ≤ 2m(n − 1). It was shown
by Feige [8], [9], that for any connected graph G, the cover time satisfies (1 − o(1))n log n ≤
C(G) ≤ (1+ o(1)) 4

27
n3. Between these two extremal examples, the cover time, both exact and

asymptotic, has been determined for a number of different classes of graphs.

In this paper we study the cover time of random graphs G(d) picked uniformly at random
(uar) from the set G(d) of simple graphs with vertex set V = [n] and degree sequence
d = (d1, d2, . . . , dn), where di is the degree of vertex i ∈ V . We make the following definitions:
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Let Vj = {i ∈ V : di = j} and let nj = |Vj|. Let
∑n

i=1 di = 2m and let θ = 2m/n be the
average degree. We use the notations di and d(i) for the degree of vertex i.

Let 0 < α ≤ 1 be constant, 0 < c < 1/8 be constant and let d be a positive integer. Let
γ = (

√
log n/θ)1/3. We suppose the degree sequence d satisfies the following conditions:

(i) Average degree θ = o(
√
log n).

(ii) Minimum degree δ ≥ 3.

(iii) For δ ≤ i < d, ni = O(nci/d).

(iv) nd = αn+ o(n). We call d the effective minimum degree.

(v) Maximum degree ∆ = O(nc(d−1)/d).

(vi) Upper tail size
∆∑

j=γθ

nj = O(∆).

We call a degree sequence d which satisfies conditions (i)–(vi) nice, and apply the same
adjective to G(d). Basically, nice graphs are sparse, with not too many high degree vertices.
Any degree sequence with constant maximum degree, and for which d = δ is nice. The
conditions hold in particular, for d-regular graphs, d ≥ 3, d = δ = o(

√
log n), as condition

(iii) is empty. The spaces of graphs we consider are somewhat more general. The condition
nice, allows for example, bi-regular graphs where half the vertices are degree d ≥ 3 and half
of degree a = o(

√
log n).

Conditions (i), (v), (vi) allow us to infer structural properties of G(d) via the configuration
model, in a way that is explained in Section 3.1. The effective minimum degree condition
(iv), ensures that some entry in the degree sequence occurs order n times. Condition (iii) is
necessary for the analysis of the random walk, as Theorem 1 does not hold when c > 1, even
if the maximum degree is constant. However, the value c < 1/8 in condition (iii) is somewhat
arbitrary, as are the precise values in conditions (v), (vi).

It will follow from Lemma 7 that random graphs with a nice degree sequence are connected
with high probability (whp). The following theorem gives the cover time of nice graphs.

Theorem 1. Let G(d) be chosen uar from G(d), where d is nice. Then whp

C(G(d)) ∼ d− 1

d− 2

θ

d
n log n. (1)

In this paper, the notation whp means with probability 1− n−Ω(1), and A(n) ∼ B(n) means
limn→∞A(n)/B(n) = 1.
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We note that if d ∼ θ, i.e. the graph is pseudo-regular, then as long as condition (iii) holds,

C(G) ∼ d− 1

d− 2
n log n.

This extends the result of [5] for random d-regular graphs.

Structure of the paper

The proof of Theorem 1 is based on an application of (7) below. Put simply, (7) says that, if we
ignore which vertices the random walk visits during the mixing time, the probability a vertex v
remains unvisited in the first t steps is asymptotic to exp(−πvt/Rv). Here πv = d(v)/2m where
d(v) is the degree of vertex v and m is the number of edges. The variable Rv is the expected
number of returns to v during the mixing time, for a walk starting at v. To estimate Rv in
Section 4.2, we describe and prove the required whp graph properties in Section 3. Lemma 7,
proved in the Appendix establishes that nice graphs have constant conductance whp; which
implies connectivity as asserted in the introduction. The proof that (7) is valid whp for G(d)
is similar to proofs in earlier papers and is given in the Appendix. The cover time C(G) in
(1) is established in Section 5 as follows. Firstly an upper bound of (1 + o(1))C(G) is proved
in Section 5.1. In Section 5.2 a lower bound is determined by constructing a set of vertices S
such that

∑
v∈S exp(−πvt/Rv) → ∞ at t = (1− o(1))C(G).

2 Estimating first visit probabilities

In this section G denotes a fixed connected graph with n vertices. A random walk Wu is
started from a vertex u. Let Wu(t) be the vertex reached at step t, let P be the matrix of

transition probabilities of the walk and let P
(t)
u (v) = Pr(Wu(t) = v). We assume that the

random walk Wu on G is ergodic with stationary distribution π, where πv = d(v)/(2m), and
d(v) is the degree of vertex v.

Let T be a positive integer such that for t ≥ T

max
u,x∈V

|P (t)
u (x)− πx| ≤ n−3, (2)

and let

λ =
1

KT
(3)

for a sufficiently large constant K. The existence of such a T will follow from (20).
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Considering a walk Wv, starting at vertex v, let rt = Pr(Wv(t) = v) be the probability that
the walk returns to v at step t = 0, 1, ..., and let

RT (z) =
T−1∑

j=0

rjz
j. (4)

Given vertices u, v, let Wu be a random walk starting at vertex u. For t ≥ T let Av(t) be the
event that Wu does not visit v in steps T, T +1, . . . , t. Several versions of the following lemma
have appeared previously (e.g. in [5], [6]). For completeness, a proof is given in Section 6.1 of
the Appendix.

Lemma 2. Let v ∈ V satisfy the following conditions:

(a) For some constant ψ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ ψ,

where RT (z) is from (4).

(b) Tπv = o(1) and Tπv = Ω(n−2) for all v ∈ V .

Let
Rv = RT (1). (5)

Then there exists
pv =

πv
Rv(1 +O(Tπv))

, (6)

such that for all t ≥ T ,

Pr(Av(t)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−λt/2). (7)

3 Graph properties

We make our whp calculations about properties of nice graphs in the configuration model,
(see Bollobás [3]). Let W = [2m] be the set of configuration points and for i ∈ [n], let
Wi = [d1 + · · ·+ di−1 +1, d1 + · · ·+ di]. Thus Wi, i = 1, ..., n is a partition of W . For u ∈ Wi,
define φ : [2m] → [n] by φ(u) = i. Thus, |Wi| = di, and φ(u) is the vertex corresponding
to the configuration point u. Given a pairing F (i.e. a partition of W into m pairs {u, v})
we obtain a multi-graph GF with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F .
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Choosing a pairing F uniformly at random from among all possible pairings of the points of
W produces a random multi-graph GF . Let

F(2m) =
(2m)!

m!2m
. (8)

Thus F(2m) counts the number of distinct pairings F of the 2m points in W . Moreover the
number of pairings corresponding to each simple graph G ∈ G(d) is the same, so that simple
graphs are equiprobable in the space of multi-graphs. Let ν =

∑
i di(di − 1)/(2m). Assuming

that ∆ = o(m1/3), (see e.g. [10]), the probability that GF is simple is given by

PS = Pr(GF is simple) ∼ e−
ν
2
− ν2

4 . (9)

Our assumption that conditions (i)–(vi) hold for d, imply that ∆ = o(m1/3). Also as γ =
(
√
log n/θ)1/3, then ν = o(

√
log n) follows from

ν ≤ 1

θn

(
γθ∑

j=3

njj
2 +

∆∑

j=γθ

njj
2

)
≤ 1

θn
(nγ2θ2 +O(∆3)) = o(

√
log n).

If ν = o(
√
log n), then PS in (9) is at least e−o(logn). On the other hand, statements about

graph structure we make in this paper using the configuration model fail with probability at
most n−Ω(1), which means they hold whp for simple graphs.

3.1 Structural properties of G(d)

In this section we establish the whp properties of nice graphs needed to estimate Rv in (5)
for all v ∈ V .

Let C be a large constant, and let

ω = C log log n. (10)

A cycle or path is small, if it has at most 2ω + 1 vertices, otherwise it is large. Let

ℓ = B log2 n (11)

for some large constant B. A vertex v is light if it has degree at most ℓ, otherwise it is heavy.
A cycle or path is light if all vertices are light. A light vertex v is small if it has degree at
most d− 1.

Lemma 3. Let d be a nice degree sequence and let G(d) be chosen uniformly at random from
the G(d). There exists ǫ > 0 constant such that with with probability 1−O(n−ǫ),

(a) No vertex disjoint pair of small light cycles are joined by a small light path.
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(b) No light vertex is in two small light cycles.

(c) No small cycle contains a heavy vertex or small vertex, or is connected to a heavy or small
vertex by a small path.

(d) No pair of small or heavy vertices is connected by a small path.

Proof We note a useful inequality. For integer x > 0, let F(2x) = (2x)!
2xx!

, as defined in (8),
then

F(θn− 2x)

F(θn)
=

(θn− 2x)!(
θn
2
− x
)
!2

θn
2
−x

(
θn
2

)
!2

θn
2

(θn)!
=

(
x∏

i=1

θn− 2i+ 1

)−1

≤
(

1

θn− 2x+ 1

)x

. (12)

(a) Let S denote the sum over a, b, c of the expected number of subgraphs consisting of small
light vertex cycles of length a, b joined by a small light vertex path of length c+ 1. Then

S ≤
2ω+1∑

a=3

2ω+1∑

b=3

2ω+1∑

c=0

(
n

a

)(
n

b

)(
n

c

)
(a− 1)!

2

(b− 1)!

2
c!abℓ2(a+b+c+1)F(θn− 2(a+ b+ c+ 1))

F(θn)

(13)

Explanation. Choose a vertices for one cycle, b vertices for the other and c vertices for the
path. Each light vertex has most ℓ(ℓ− 1) ways to connect to its neighbours on a given path
or cycle. This explains the exponent of ℓ. Choosing x = (a+ b+ c+ 1) ≤ 6ω + 4 in (12), we
find S is bounded by

S ≤
2ω+1∑

a=3

2ω+1∑

b=3

2ω+1∑

c=0

nanbncℓ2(a+b+c+1)

(
1

θn− (12ω + 8)

)a+b+c+1

≤ ℓ2

θn− (12ω + 8)

∑

a

∑

b

∑

c

(
nℓ2

θn− (12ω + 8)

)a+b+c

= O

(
ω3ℓ12ω+8

θn

)
= o(1). (14)

(b) The proof for this part is similar to (a).

(c) Note that, in condition (vi), the value of γθ < ℓ and thus the number, H, of heavy
vertices is O(∆) = O(nc(d−1)/d). Similarly, from condition (iii), the number of small vertices
is O(nc(d−1)/d). The expected number S of cycles of length 3 ≤ a ≤ 2ω + 1 with a − k light
vertices and k ≥ 1 heavy vertices can be bounded by the expected number of configuration
pairings of cycles of this type. Thus

S ≤
2ω+1∑

a=3

∑

k≥1

(
n

a− k

)(
H

k

)
(a− 1)!ℓ2(a−k)∆2kF(θn− 2a)

F(θn)
.
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Thus, using (12), we have

S = O(1)
∑

a

∑

k≥1

(
a

k

)
n−k∆3kℓ2a

= O(1)
∑

a

ℓ2a
a∆3

n

= O(ω2)
ℓ4ω+2∆3

n
= o(1).

We next count the expected number S of cycles of lengths 3 ≤ a ≤ 2ω+1 containing only light
vertices, which are joined to a heavy vertex by a light vertex path of length 0 ≤ b− 1 ≤ 2ω.
This can be bounded by

S ≤
2ω+1∑

a=3

2ω+1∑

b=1

(
n

a

)(
n

b− 1

)(
H

1

)
(a− 1)!(b− 1)!ℓ2a+2(b−1)+1a∆

F(θn− 2(a+ b))

F(θn)

= O(ω2)
ℓ8ω+4∆2

n
= o(1).

(d) There are H = O(∆) small or heavy vertices. The expected number S of small light paths
length connecting such vertices is

S ≤
2ω+1∑

a=0

(
n

a

)(
H

2

)
a!ℓ2a∆2F(θn− 2(a+ 1))

F(θn)

= O

(
ωℓ4ω+2∆4

n

)
.

2

For a vertex v, let Gv be the subgraph induced by the set of vertices within a distance ω of
v. As any paths or cycles contained in Gv are of length at most 2ω + 1 and hence small, the
following lemma is a corollary of Lemma 3.

Lemma 4. Let G(d) be nice. Assuming the conditions (a)-(d) of Lemma 3 hold, then

(a) If Gv contains a small or heavy vertex, Gv is a tree.

(b) If Gv is not a tree, then Gv contains exactly one small cycle, and all vertices of Gv are
light.

(c) There are O(ℓωnci/d) vertices v such that Gv contains a small vertex of degree i.

(d) There are O(ℓωn2c(d−1)/d) vertices v such that Gv contains a heavy vertex.

7



Proof If Gv contains a small or heavy vertex then it is a tree, and all other vertices are
light. Thus |Gv| = O(ℓω) for small vertices, and there are O(nci/d) small vertices of degree i.
If Gv contains a heavy vertex then |Gv| = O(∆ℓω). 2

Lemma 5. Let d be a nice degree sequence and let G(d) be chosen uniformly at random from
the G(d). For any ǫ > 0 constant, with probability 1− O(n−ǫ), there are at most n4ǫ vertices
v such that Gv contains a cycle.

Proof The expected number of vertices on small light cycles is at most

S ≤
2ω+1∑

a=3

(
n

a

)
(a− 1)!

2
ℓ2a

F(θn− 2a)

F(θn)

= O
(
ωℓ4ω+2

)
.

The probability there are more than nǫ vertices on small light cycles is o(n−ǫ/2), for any ǫ > 0.
If Gv contains only light vertices, then |Gv| = O(ℓω), and thus (whp) there are at most n2ǫ

vertices v such that Gv contains a small light cycle. 2

A vertex v is d-compliant, if Gv is a tree, and all vertices of Gv have degree at least d. A
vertex v is d-tree-like to depth h if the graph induced by the vertices at distance at most h
from v form a d-regular tree, (i.e. all vertices on levels 0, 1, ..., h− 1 have degree d).

A vertex v is d-tree-regular, if it is d-tree-like to depth h, d-compliant to depth ω and all
vertices of Gv are light. For such a vertex v, the first h levels of the BFS tree, really are a
d-regular tree, and the remaining ω − h levels can be pruned to a d-regular tree. We choose
the following value for h, which depends on θ.

h =
1

log d
log

(
log n

(log log n) log θ

)
(15)

The exact value of h is not so important. The main thing is that dh → ∞ in Lemma 9, but
not too fast in Lemma 6.

Lemma 6. Let d be a nice degree sequence and let G(d) be chosen uniformly at random from
the G(d). There exists ǫ > 0 constant such that with with probability 1 − O(n−ǫ), there are
n1−O(1/ log logn) d-tree-regular vertices.

Proof Recall that nd = |Vd| = αn + o(n) for some constant α > 0. We assume from
Lemmas 4 and 5 that all but O(nǫ) + O(ℓω∆2) vertices of degree d are d-compliant, or have
a heavy vertex within distance ω.

Let N2 = 1 + d(d − 1)h. If v has degree d and is d-tree-like to depth h, then the tree of this
depth rooted at v contains less than N2 vertices. We bound the probability P that a vertex
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v of degree d(v) = d is d-tree-like, by bounding the probability of success of the construction
of a d-regular tree of depth h in the configuration model.

P = Pr(vertex v is d-tree-like) =

N2−1∏

i=1

d(nd − i)

θn− 2i+ 1
≥
(
d
nd −N2

θn

)N2

. (16)

Let M count the number of d-tree-like vertices, then E[M ] = µ = ndP , and for the value of
h given in (15) we have that

µ = E[M ] = n1−O(1/ log log n). (17)

To estimate Var[M ], let Iv be the indicator that vertex v is d-tree-like. We have

E[M2] = µ+
∑

v∈Vd

∑

w∈Vd,w 6=v

E[IvIw], (18)

and

E[IvIw] = Pr(v, w are d-tree-like, Gv ∩Gw = ∅) +Pr(v, w are d-tree-like, Gv ∩Gw 6= ∅).
Now

Pr(v, w are d-tree-like, Gv ∩Gw = ∅) =
2N2−2∏

i=1

d(nd − i− 1)

θn− 2i+ 1
≤ P 2. (19)

For any vertex v, the number of vertices w such that Gv ∩Gw 6= ∅ is bounded from above by
N2 + dN2

2 . Using this and (19), we can bound (18) from above by µ+ µ2 + µ(N2 + dN2
2 ).

By the Chebychev Inequality, for some constant 0 < ǫ̃ < 1,

Pr
(
|M − µ| > µ

1
2
+ǫ̃
)
≤ Var[M ]

µ1+2ǫ̃
=

E[M2]− E[M ]2

µ1+2ǫ̃
≤ µ+ µN2 + µdN2

2

µ1+2ǫ̃
= O(n−ǫ).

The lemma now follows from (17). 2

4 Random walk properties

4.1 Mixing time

Given a graph G, the conductance Φ(G) of a random walk Wu on G is defined by

Φ(G) = min
π(S)≤1/2

e(S : S)

d(S)

where d(S) =
∑

v∈S d(v), π(S) = d(S)/2m, and e(A : B) denotes the number of edges with
one endpoint in A and the other in B. The lemma below follows by applying (9) to Lemma
12 proved in Section 6.2 of the Appendix.
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Lemma 7. Let d be a nice degree sequence and let G(d) be chosen uniformly at random from
the G(d), then with probability 1−O(n−1/9)

Φ(G) ≥ 1

100
.

Note that Φ(G) ≥ 1/100 in Lemma 7 implies G(d) is connected.

We note a result from Sinclair [11], that

|P (t)
u (x)− πx| ≤ (πx/πu)

1/2(1− Φ2/2)t. (20)

Referring to Lemma 7 and (20), if we choose A sufficiently large and

T = A log n (21)

then (2) holds. There is a technical point here, in that the result (20) assumes that the walk
is lazy. A lazy walk moves to a neighbour with probability 1/2 at any step. This assumption
halves the conductance, and doubles the value of RT (1). Asymptotically, the cover time is
also doubled by the inclusion of the lazy steps. The trajectory, and hence cover time of the
underlying (non-lazy) walk can be recovered by removing the lazy steps. We will ignore the
assumption in (20) for the rest of the paper; and continue as though there are no lazy steps.

4.2 Expected number of returns in the mixing time

Escape probability. Let v ∈ V , and B ⊆ V , and assume v 6∈ B. For a walk Wv
B starting

at v, let Pv(B) be the probability that the walk reaches B without return to v; the escape
probability from v to B. The value of Pv(B) is given by

Pv(B) =
1

d(v)Reff(v,B)
, (22)

where Reff(v,B) is the effective resistance between v and B, treating the edges as having unit
resistance. If we treat B as an absorbing state, then fv(B) = 1− Pv(B) is the probability of
a first return to v by Wv

B before absorption at B; and Rv(B) = 1/(1− fv(B)) = 1/Pv(B) is
the expected number of returns to v before absorption at B.

The attractiveness of formula (22) is that by Rayleigh’s monotonicity law, deleting edges of
the graph does not decrease the effective resistance between v and B. Thus provided we do
not delete any edges incident with v, such pruning cannot increase Pv(B). See [7] for details
of Rayleigh’s monotonicity law, and a proof of (22).

For a vertex v, we defined Gv as the subgraph induced by the set of vertices within a distance
ω of v. Denote by Γ◦

v those vertices of Gv at distance exactly ω from v. The following lemma
relates Rv in (5) of Lemma 2 to R∗

v = Rv(Γ
◦
v) obtained from (22) as described above.
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Lemma 8. Let G(d) be nice, and assume the conditions of Lemma 3 and Lemma 7 hold. Let
W∗

v denote a walk on Gv starting at v with Γ◦
v made into an absorbing state. Let R∗

v =
∑∞

t=0 r
∗
t ,

where r∗t is the probability that W∗
v is at vertex v at time t. Let Rv be given by (5), then

Rv = R∗
v + o

(
1

log n

)
.

For completeness the proof of Lemma 8 is given in Section 6.3 of the Appendix. A similar
proof is given in e.g. [5]. The precise value of R∗

v is given by (22). The next lemma gives some
approximate bounds.

Lemma 9. For a vertex v ∈ V , let W∗
v be a walk on Gv, starting at v, and with Γ◦

v made into
an absorbing state. Let Pv(Γ

◦
v) be the escape probability of a walk, and let R∗

v = 1/Pv(Γ
◦
v).

(a) If v is d-tree-regular, then R∗
v =

d−1
d−2

(1+o(1)).

(b) If v is d-compliant then R∗
v ≤ d−1

d−2
(1+o(1)).

(c) If Gv is a tree, R∗
v ≤ δ−1

δ−2
(1+o(1)).

(d) If Gv contains a single cycle, and all vertices of Gv have degree at least d,

then R∗
v ≤ d(d−1)

(d−2)2
(1+o(1)).

Proof (a)

For a biased random walk on the half-line (0, 1, ..., k), starting at vertex i, with absorbing
states 0, k, and with transition probabilities at vertices (1, . . . , k − 1) of q = Pr(move left),
p = Pr(move right); then

Pr(absorption at k) =
1− (q/p)i

1− (q/p)k
. (23)

We first project W∗
v onto (0, 1, . . . , h) with p = d−1

d
and q = 1

d
. As v is d-tree-like, the

probability Q(h) of escaping from v to level h of the d-regular tree of depth h rooted at v is

Q(h) =
1− 1

d−1

1−
(

1
d−1

)h .

Thus for h given by (15), (d− 1)h → ∞ and

Pv(Γ
◦
v) ≤ Q(h) = (1 + o(1))

d− 2

d− 1
.
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On the other hand Gv is d-compliant so, by pruning, contains a d-regular subtree, and

Pv(Γ
◦
v) ≥

1− 1
d−1

1−
(

1
d−1

)ω = (1 + o(1))
d− 2

d− 1
.

(b) We can find a lower bound on the escape probability as follows. Retain all edges incident
with v. Working outward from the neighbours of v, prune all internal vertices of Gv down to
degree d, to obtain a subtree Λv of Gv in which v has degree d(v) as in Gv. Let Λ◦

v be its
leaves, and Pv(Λ

◦
v) the escape probability from v to Λ◦

v in Λv. Then by considering effective
resistance, in (22)

Pv(Γ
◦
v) ≥ Pv(Λ

◦
v) = (1 + o(1))

d− 2

d− 1
.

(c) If Gv is a tree, but has some vertex w of degree δ ≤ d(w) < d, then, we can prune
the internal vertices of Gv − {v} to a δ-regular tree. By arguments similar to (b), Pv(Γ

◦
v) ≥

(1 + o(1))(δ − 2)/(δ − 1) .

(d) If Gv contains a unique cycle, and all vertices in Gv have degree at least d, the arguments
in (a) can be modified to fit this case. By assumption, there are at most two cycle edges
incident with v, and d(v) ≥ d so

Pv(Γ
◦
v) ≥

d− 2

d

d− 2

d− 1
+

2

d
Φ,

where Φ ≥ 0 is the probability of no return to v given a cycle edge, or an edge on a path to a
cycle was taken at v. 2

At this point, a brief summary may be useful.

• Gv is a vertex induced subgraph of G. Up to absorption at Γ◦
v, the boundary of Gv, a

walk starting from v in G is identically coupled with a walk on Gv.

• The escape probability Pv(Γ
◦
v) from v of the walk W∗

v has a precise value. For d-tree-
regular vertices v it can be approximated by Pv(Γ

◦
v) = (d−2)/(d−1)(1+O(1/dh)). Our

choice of h (see (15)) ensures the error term is o(1).

• By choosing ω = C log log n as in (10), and C sufficiently large, 1/Rv can be written as

1

Rv

= Pv(Γ
◦
v) + o

(
1

log n

)
. (24)

The o(1/ log n) accuracy is needed in the proof of the lower bound on the cover time.
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5 Cover time of G(d)

5.1 Upper bound on cover time

Let TG(u) be the time taken by the random walk Wu to visit every vertex of a connected
graph G. Let Ut be the number of vertices of G which have not been visited by Wu at step t.
We note the following:

Cu = E[TG(u)] =
∑

t>0

Pr(TG(u) ≥ t), (25)

Pr(TG(u) ≥ t) = Pr(TG(u) > t− 1) = Pr(Ut−1 > 0) ≤ min{1,E[Ut−1]}. (26)

Recall from (7) that As(v) is the event that vertex v has not been visited during steps
T, T + 1, ..., s. It follows from (25), (26) that

Cu ≤ t+ 1 +
∑

s≥t

E[Us] ≤ t+ 1 +
∑

v

∑

s≥t

Pr(As(v)). (27)

Let t0 =
(
d−1
d−2

θ
d

)
n log n and t1 = (1 + ǫ) t0, were ǫ = o(1) is sufficiently large that all inequali-

ties claimed below hold. We assume that Lemma 7 holds, and also the high probability claims
of Section 3. Thus Lemma 8 and Lemma 9 give values of Rv for all v ∈ V . In Section 6.4
of the Appendix, we establish that Condition (a) of Lemma 2 holds. The maximum degree
of any vertex is na, a < 1, and T = A log n (see (21)), so Condition (b) of Lemma 2 that
Tπv = o(1), holds trivially.

Recall from (6) that pv = (1 + O(Tπv))d(v)/(θnRv). Thus by (7), the probability that Wu

has not visited v during [T, t] is given by

Pr(At(v)) = (1 + o(1))e−tpv +O(T 2πve
−λt/2) (28)

= (1 + o(1))e−tpv . (29)

Thus

∑

t≥t1

(1 + o(1))e−tpv = (1 + o(1))e−t1pv
∑

(t−t1)≥0

e−(t−t1)pv

=
(1 + o(1))

1− e−pv
e−t1pv

= O(1)
θnRv

d(v)
exp

{
−(1 + Θ(ǫ))

d(v)

d

d− 1

d− 2

log n

Rv

}
. (30)

We consider the following partition of V :
(i) VA =

⋃
v{Gv contains a small vertex}.
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(ii) VB =
⋃

i≥d{d(v) = i : v is d-compliant}.
(iii)VC =

⋃
i≥d{d(v) = i : Gv contains a cycle}.

Case (i): Gv contains a small vertex.
By Lemma 4(c) there are O(ℓωnci//d) vertices v for which Gv contains a vertex of degree i < d,
By Lemma 9(c), Rv ≤ (1 + o(1)) δ−1

δ−2
. Also Gv can contain at most one small vertex of degree

i < d, so d(v) ≥ i. Thus (30) is bounded by

O(θn)n−(1+o(1)) i
d

d−1
d−2

δ−2
δ−1 ≤ O(θn)n

−(1+o(1)) i
d

δ(δ−2)

(δ−1)2 .

The term δ(δ − 2)/(δ − 1)2 ≥ 3/4, whereas c < 1/8. Thus

∑

δ≤i<d

∑

v∈Vi

∑

t≥t1

(1 + o(1))e−tpv ≤ O(θn)
∑

δ≤i<d

nci/dn−(1+o(1))3i/4d = o(t1).

Case (ii): d ≤ d(v), v is d-compliant.
Note that this includes the d-tree-regular case. For v ∈ VB (30) is bounded by O(θ)n−Θ(ǫ).
Therefore

∑

v∈VB

∑

t≥t1

(1 + o(1))e−tpv ≤
∑

v∈VB

O(θ)n−Θ(ǫ) = O(θn)n−Θ(ǫ) = o(t1).

Case (iii): d ≤ d(v), Gv contains a cycle.

These vertices v ∈ VC , Rv is given by Lemma 9(d). Thus (30) is bounded byO(θn)n
−(1+Θ(ǫ))

d(d−1)

(d−2)2 .
By Lemma 4, |VC | ≤ nǫ′ where ǫ′ > 0 arbitrarily small, and so we choose 2ǫ′ < d(d− 1)/(d− 2)2.
Hence

∑

v∈VC

∑

t≥t1

(1 + o(1))e−tpv =
∑

v∈VC

O(θn)n
−(1+Θ(ǫ))

d(d−1)

(d−2)2

= O(θn)nǫ′n
−(1+Θ(ǫ))

d(d−1)

(d−2)2

= o(t1).

In each of the cases above, the term
∑

v

∑
s≥t Pr(As(v)) = o(t1). Thus, from (27), Cu ≤

(1 + o(1))t1 as required. This completes the proof of the upper bound on cover time of G(d).
2

5.2 Lower bound on cover time

Let t2 = (1− ǫ)t0, were ǫ = o(1) is sufficiently large that all inequalities claimed below hold.
To establish the lower bound, we exhibit a set of vertices S for which, the probability the set

14



S is covered by a walk Wu at time t2, tends to zero. Hence TG(u) > t2, whp which implies
that C(G) ≥ t0 − o(t0).

We construct S as follows. Let Sd be the set of d-tree-regular vertices. Lemma 6 tells us
that |Sd| = n1−o(1). Let ω = C log log n for some large C, as in (10). Let S be a maximal
subset of Sd such that the distance between any two elements of S is least 2ω + 1. Thus
|S| = Ω(n1−o(1)/ℓ2ω).

Let S(t) denote the subset of S which is still un-visited after step t of Wu. Let v ∈ S, then

Pr(Av(t2)) = (1 + o(1))e−t2pv(1−O(pv)) + o(n−2).

Hence

E(|S(t2)|) ≥ (1 + o(1))|S|e−(1−ǫ)t0pv −O(T ) (31)

= Ω

(
nǫ/2−o(1)

ℓ2ω

)
→ ∞. (32)

The term O(T ) above, counts vertices of S visited during the first T steps of the walk. Let
Yv,t be the indicator for the event At(v). Let Z = {v, w} ⊂ S. We will show (below) that
that for v, w ∈ S

E(Yv,t2Yw,t2) =
1 +O(Tπv)

(1 + pZ)t2
+ o(n−2), (33)

where

pZ = pv + pw + o

(
d

θn log n

)
. (34)

Thus
E(Yv,t2Yw,t2) = (1 + o(1))E(Yv,t2)E(Yw,t2)

which implies
E(|S(t2)|(|S(t2)| − 1)) ∼ E(|S(t2)|)(E(|S(t2)|)− 1). (35)

It follows from (32) and (35), that

Pr(S(t2) 6= ∅) ≥ E(|S(t2)|)2
E(|S(t2)|2)

=
1

E(|S(t2)|(|S(t2)|−1))
E(|S(t2)|)2

+ E(|S(t2)|)−1
= 1− o(1).

Proof of (33)-(34). Let Ĝ be obtained from G by merging v, w into a single vertex Z.
Let ρ be the expected number of passages between v, w in T steps. By construction, as
Gw is a tree, whenever the walk arrives at Γ◦

w after leaving v it will have to traverse a
unique path of length ω to reach w. Using (23) and arguments similar to Lemma 9, we

find ρ = O(T 2/(d− 1)ω) = o(1/ log n). Thus Lemma 8 is valid for Ĝ.

There is a natural measure-preserving map from the set of walks in G which start at u and
do not visit v or w, to the corresponding set of walks in Ĝ which do not visit Z. Thus
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the probability that Wu does not visit v or w in steps T...t is asymptotically equal to the
probability that a random walk Ŵu in Ĝ which also starts at u does not visit Z in steps T...t.
The detailed argument is given in [6].

We apply Lemma 2 to Ĝ. The value of πZ = 2d/θn. The vertex Z has degree 2d and GZ is
otherwise d-tree-regular, as Gv, Gw are vertex disjoint. The derivation of R∗

Z , can be made as
follows. The escape probability from Z to Γ◦

Z is given by

PZ(Γ
◦
Z) =

1

2
(Pv(Γ

◦
v) + Pw(Γ

◦
w)),

as with probability 1/2 the walk takes a v-edge at Z and escapes to Γ◦
v etc. Thus, as claimed

in (34),

pZ =
πZ
RZ

(1 +O(TπZ)) =
2d

θn
(PZ(Γ

◦
Z) + o(1/ log n)) = pv + pw + o(d/θn log n).

2
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6 Appendix

6.1 Proof of Lemma 2

Generating function formulation

Let dt = maxu,x∈V |P (t)
u (x)− πx|, and let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x)− πx| ≤ n−3. (36)

It follows from e.g. Aldous and Fill [1] that ds+t ≤ 2dsdt and so for k ≥ 1,

max
u,x∈V

|P (kT )
u (x)− πx| ≤

2k−1

n3k
. (37)

Fix two vertices u, v. Let ht = Pr(Wu(t) = v) be the probability that the walk Wu visits v at
step t. Let

H(z) =
∞∑

t=T

htz
t (38)

generate ht for t ≥ T .

Next, considering the walk Wv, starting at v, let rt = Pr(Wv(t) = v) be the probability that
this walk returns to v at step t = 0, 1, .... Let

R(z) =
∞∑

t=0

rtz
t

17



generate rt. Our definition of return includes the term r0 = 1.

For t ≥ T let ft = ft(u→v) be the probability that the first visit of the walk Wu to v in the
period [T, T + 1, . . .] occurs at step t. Let

F (z) =
∞∑

t=T

ftz
t

generate ft. Then we have
H(z) = F (z)R(z). (39)

First visit time lemma

For R(z) let

RT (z) =
T−1∑

j=0

rjz
j. (40)

Let

λ =
1

KT
(41)

for some sufficiently large constant K.

Lemma 10. Suppose that

(a) For some constant ψ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ ψ.

(b) Tπv = o(1) and Tπv = Ω(n−2).

There exists
pv =

πv
RT (1)(1 +O(Tπv))

, (42)

where RT (1) is from (40), such that for all t ≥ T ,

ft(u→v) = (1 +O(Tπv))
pv

(1 + pv)t+1
+O(Tπve

−λt/2). (43)

Proof Write

R(z) = RT (z) + R̂T (z) +
πvz

T

1− z
, (44)
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where RT (z) is given by (40) and

R̂T (z) =
∑

t≥T

(rt − πv)z
t

generates the error in using the stationary distribution πv for rt when t ≥ T . Similarly,

H(z) = ĤT (z) +
πvz

T

1− z
. (45)

Equation (37) implies that the radii of convergence of both R̂T and ĤT exceed 1+2λ. Moreover,
for Z = H,R and |z| ≤ 1 + λ,

|Ẑ(z)| = o(n−2). (46)

Using (44), (45) we rewrite F (z) = H(z)/R(z) from (39) as F (z) = B(z)/A(z) where

A(z) = πvz
T + (1− z)(RT (z) + R̂T (z)), (47)

B(z) = πvz
T + (1− z)ĤT (z). (48)

For real z ≥ 1 and Z = H,R, we have

ZT (1) ≤ ZT (z) ≤ ZT (1)z
T .

Let z = 1 + βπv, where β = O(1). Since Tπv = o(1) we have

ZT (z) = ZT (1)(1 +O(Tπv)).

Tπv = o(1) and Tπv = Ω(n−2) and RT (1) ≥ 1 implies that

A(z) = πv(1− βRT (1) +O(Tπv))

It follows that A(z) has a real zero at z0, where

z0 = 1 +
πv

RT (1)(1 +O(Tπv))
= 1 + pv, (49)

say. We also see that
A′(z0) = −RT (1)(1 +O(Tπv)) 6= 0 (50)

and thus z0 is a simple zero (see e.g. [4] p193). The value of B(z) at z0 is

B(z0) = πv (1 +O(Tπv)) 6= 0. (51)

Thus,
B(z0)

A′(z0)
= −(1 +O(Tπv))pv. (52)
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Thus (see e.g. [4] p195) the principal part of the Laurent expansion of F (z) at z0 is

f(z) =
B(z0)/A

′(z0)

z − z0
. (53)

To approximate the coefficients of the generating function F (z), we now use a standard tech-
nique for the asymptotic expansion of power series (see e.g.[12] Th 5.2.1).

We prove below that F (z) = f(z) + g(z), where g(z) is analytic in Cλ = {|z| ≤ 1 + λ} and
that M = maxz∈Cλ

|g(z)| = O(Tπv).

Let at = [zt]g(z), then (see e.g.[4] p143), at = g(t)(0)/t!. By the Cauchy Inequality (see e.g.
[4] p130) we see that |g(t)(0)| ≤Mt!/(1 + λ)t and thus

|at| ≤
M

(1 + λ)t
= O(Tπve

−tλ/2).

As [zt]F (z) = [zt]f(z) + [zt]g(z) and [zt]1/(z − z0) = −1/zt+1
0 we have

[zt]F (z) =
−B(z0)/A

′(z0)

zt+1
0

+O(Tπve
−tλ/2). (54)

Thus, we obtain

[zt]F (z) = (1 +O(Tπv))
pv

(1 + pv)t+1
+O(Tπve

−tλ/2),

which completes the proof of (43).

Now M = maxz∈Cλ
|g(z)| ≤ max |f(z)| + max |F (z)| = O(Tπv) + max |F (z)|, where F (z) =

B(z)/A(z). On Cλ we have, using (46)-(48),

|F (z)| ≤ O(πv)

λ|RT (z)| −O(Tπv)
= O(Tπv).

We now prove that z0 is the only zero of A(z) inside the circle Cλ and this implies that
F (z) − f(z) is analytic inside Cλ. We use Rouché’s Theorem (see e.g. [4]), the statement of
which is as follows: Let two functions φ(z) and γ(z) be analytic inside and on a simple closed
contour C. Suppose that |φ(z)| > |γ(z)| at each point of C, then φ(z) and φ(z) + γ(z) have
the same number of zeroes, counting multiplicities, inside C.

Let the functions φ(z), γ(z) be given by φ(z) = (1− z)RT (z) and γ(z) = πvz
T +(1− z)R̂T (z).

|γ(z)|/|φ(z)| ≤ πv(1 + λ)T

λψ
+

|R̂T (z)|
ψ

= o(1).

As φ(z) + γ(z) = A(z) we conclude that A(z) has only one zero inside the circle Cλ. This is
the simple zero at z0. 2
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Corollary 11. For t ≥ T let At(v) be the event that Wu does not visit v in steps T, T+1, . . . , t.
Then, under the assumptions of Lemma 10,

Pr(At(v)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−λt/2).

Proof We use Lemma 10 and

Pr(At(v)) =
∑

τ>t

fτ (u→v).

2

6.2 Proof of conductance bound in Lemma 7

By the conductance of a configuration C, we mean the conductance of a random walk on the
underlying multi-graph M(C). It is however, the configurations we sample uar in the proof
of Lemma 12.

Lemma 12. Let d = (d1, d2, ..., dn) be a sequence of natural numbers, satisfying min di ≥ 3
and θ ≤ n1/4. With probability 1− o(n−1/9) the conductance Φ of a uar sampled configuration
C(d) satisfies Φ ≥ 0.01.

Proof Let F (a) = a!/((a/2)!2(a/2)). With this notation,

F (b)F (a− b)

F (a)
=

(
a/2
b/2

)
(
a
b

) = O(1)

(
b

a

)b/2(
1− b

a

)(a−b)/2

. (55)

For any S ⊆ V let d(S) denote the sum of the degrees of the vertices of S. A set S is small
if d(S) ≤ (θn)1/4. A set is large if (θn)1/4 ≤ d(S) ≤ θn/2. Let 8/9 < β < 1 be a positive
constant.

SMALL SETS (δ|S| ≤ d(S) ≤ (θn)1/4).
Let N(s, β) be the expected number of small sets S of size s with at least βd(S) induced
edges.

N(s, β) =
∑

S

(
d(S)

βd(S)

)
F (βd(S))F (θn− βd(S))

F (θn)
. (56)
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Noting that
(
L
k

)
≤ (Le/k)k and using (55) with δs ≤ d(S) ≤ (θn)1/4 and δ ≥ 3 we find

N(s, β) ≤ O(1)
∑

S

(
d(S)e

βd(S)

)βd(S)(
βd(S)

θn

)βd(S)/2(
1− βd(S)

θn

)(θn−βd(S))/2

≤ O(1)
∑

S

(
e

β

)βd(S)(
βd(S)

θn

)βd(S)/2

≤ O(1)

(
ne

s

(
e2

β(θn)3/4

)3β/2
)s

= O((e4n−(9β/8−1))s).

Thus ∑

|S|=s
S Small

N(s, β) = O(n−(9β/8−1)).

LARGE SETS((θn)1/4 ≤ d(S) ≤ θn/2).
Let N(s, β) be the expected number of large sets S of size s inducing at least βd(S) edges.
As before, N(s, β) is given by (56). Let d(S) = αθn where 0 < α ≤ 1/2. Let ε = 1− β. We
note the following approximation:

(
d(s)

βd(S)

)
=

(
αθn

βαθn

)
=

O(1)√
εβαθn

1

ββαθnεεαθn
.

Thus

N(s, β) ≤
∑

S

O(1)√
εβαθn

(
(αβ)αβ(1− αβ)1−αβ

(εεββ)2α

) θn
2

=
∑

S

f(S). (57)

Let s = cn. We henceforth assume that we choose the value α = α∗ which maximizes f(S)
for |S| = cn. With this convention we can write

N(cn, β) ≤ O(1)√
εβc(1− c)αθn2

((
(αβ)αβ(1− αβ)1−αβ

(εεββ)2α

) θ
2 1

cc(1− c)1−c

)n

. (58)

We split the proof for large sets into two parts: Those sets for which α ≤ 1/θ and those for
which 1/θ ≤ α ≤ 1/2.

Case of α ≤ 1/θ.
We need to remove the dependence on c in the right hand side of the expression (58) for

N(cn, β). We first deal with the square root term. Since 1
n

≤ c ≤ (n−1)
n

, we have that
c(1− c) ≥ n−1

n2 and so

c(1− c)αθn2 ≥ n− 1

n2
(θn)1/4n ≥ (θn)1/4 /2.
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Therefore, as β, ε are positive constants,

1√
εβc(1− c)αθn2

=
O(1)

(θn)1/8
.

We next consider the main term of (58). For 0 ≤ x ≤ 1/2, the function

g(x) = xx(1− x)1−x

satisfies, g(0) = 1 and is monotonically decreasing with minimum g(1/2) = 1/2.

Since d(S) ≥ 3s, and s = cn, from d(S) = αθn we deduce that c ≤ αθ/3. As α ≤ 1/θ then
c ≤ αθ/3 ≤ 1/3. Therefore g(c) ≥ g(αθ/3), and we can replace c by αθ/3 in (58). Hence

N(cn, β) =
O(1)

(θn)1/8

(
(αβ)αβθ/2(1− αβ)1−αβθ/2

(αθ/3)αθ/3(1− αθ/3)1−αθ/3

(1− αβ)θ/2−1

(εεββ)αθ

)n

=
O(1)

(θn)1/8
(φ(α, β, θ))n.

We next maximize φ(α, β, θ). Let h(x, y) = (yx)x(1 − yx)1−x for 0 < x, y ≤ 1. Considering
h(x, y) as a function of y, there is a unique maximum at y = 1, given by

∂

∂y
log(h(x, y)) = x

(
1

y
− 1− x

1− yx

)
= 0,

∂2

∂y2
log(h(x, y)) = −x

(
1

y2
+
x(1− x)

(1− yx)2

)
< 0.

Therefore h(x, y) < h(x, 1) = g(x). So h(αβθ/2, 2/θ) < g(αβθ/2) < g(αθ/3). Hence

φ(α, β, θ) ≤ (1− αβ)θ/2−1

(εεββ)αθ
.

We prove below, that
∂

∂θ

{
(1− αβ)θ/2−1

(εεββ)αθ

}
< 0. (59)

Since θ ≥ δ ≥ 3, we have that

(1− αβ)θ/2−1

(εεββ)αθ
≤ e−αβ/2

(εεββ)3α
≤ λα,

where λ < 0.7, provided β ≥ 0.99.

Now since αθn ≥ (θn)1/4 for large sets, and θ ≤ n1/4 by conditions of the lemma, we have
that αn ≥ n1/16. Thus

N(cn, β) =
O(1)

(θn)1/8
(φ(α, β, θ))n

= O(λn
1/16

).
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As s = cn can take at most n values we have that
∑
N(cn, β) = O(nλn

1/16
).

Proof of (59).

∂

∂θ

{
(1− αβ)θ/2−1

(εεββ)αθ

}
=

1

1− αβ

(
(1− αβ)

1
2

(εεββ)α

)θ

log

(
(1− αβ)

1
2

(εεββ)α

)
.

Let

f(α, β) =
(1− αβ)

(εεββ)2α
.

When α = 0, f(α, β) = 1. We prove that, for β ≥ 0.99, f(α, β) < 1 for α > 0, which will
establish the result. Note that

∂

∂α
f(α, β) =

−1

(εεββ)2α
(
β + (1− αβ) log(εεββ)2

)
. (60)

Consider

d

dβ

{
log(εεββ)2 + β

}
≡ d

dβ

{
log((1− β)1−βββ)2 + β

}

= 2 log

(
β

1− β

)
+ 1.

For β > 1
2
, the last line above is positive, and thus log(εεββ)2 > −β. It follows that (60) is

negative, as required.

Case of 1/θ ≤ α ≤ 1/2.
Continuing to evaluate N(s, β) as before, and referring to f(S) as given by the right hand
side term of (57), let

A(α) =
(αβ)αβ(1− αβ)1−αβ

(εεββ)2α
.

Thus

log(A(α)) = (αβ) log((αβ)) + (1− αβ) log(1− αβ)− 2α log(εεββ),

∂

∂α
log(A(α)) = β log(αβ)− β log(1− αβ)− 2 log(εεββ).

Setting ∂
∂α

log(A(α)) = 0 gives

α =
ε2ε/ββ

1 + ε2ε/ββ2
.

Let α0 be the solution to this when β = 0.99. Thus α0 ≈ 0.477. Also,

∂2

∂α2
log(A(α)) = β

(
1

α
+

β

1− αβ

)
> 0
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hence the stationary point α0 is a minima. As θ ≥ 3 and by inspection, A(0.5) < A(1/3)
then A(α0) ≤ A(1/θ). We can use α∗ = 1/θ as the value of α maximizing A(α) in the range
1/θ ≤ α ≤ 1/2. It follows that

∑

SLarge
α≥1/θ

f(S) =

(
1√
θn

)
2n(A(1/θ))

θn
2

= O(1)2n

(
(β/θ)

β
2 (1− β/θ)

1
2
(θ−β)

εεββ

)n

.

Let

T (θ) =

(
β

θ

)β (
1− β

θ

)θ−β

,

then
∂

∂θ
log(T (θ)) = log

(
θ − β

θ

)
.

Thus T (θ) is monotone decreasing in θ, and so T (θ) ≤ T (3). Finally

∑
N(s, β) ≤ O(n)2n

(
(β/3)

β
2 (1− β/3)

1
2
(3−β)

εεββ

)n

= O (n (0.8)n) .

This completes the proof of the lemma. 2

6.3 Proof of Lemma 8

For convenience, we restate the lemma.

Lemma 13. Let W∗
v denote the walk on Gv starting at v with Γ◦

v made into an absorbing
state. Let R∗

v =
∑∞

t=0 r
∗
t where r∗t is the probability that W∗

v is at vertex v at time t. There
exists a constant ζ ∈ (0, 1) such that

Rv = R∗
v +O(ζω).

Proof We bound |Rv −R∗
v| by using

Rv −R∗
v =

ω∑

t=0

(rt − r∗t ) +
T∑

t=ω+1

(rt − r∗t )−
∞∑

t=T+1

r∗t . (61)

Case t ≤ ω. When a particle starting from v is absorbed at Γ◦
v, this is at at distance ω from

v. Thus for t < ω, r∗t = rt, and
ω∑

t=0

(rt − r∗t ) = 0. (62)
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Case ω + 1 ≤ t ≤ T . Using (20) with x = u = v and ζ = (1 − Φ2/2) < 1, we have for t ≥ ω,
that rt = πv +O(ζt). Since ∆ = O(na), a < 1, we have Tπv = o(ζω) and so

T∑

t=ω+1

|rt − r∗t | =
T∑

t=ω+1

rt ≤
T∑

t=ω+1

(πv + ζt) = O(ζω). (63)

Case t ≥ T + 1. It remains to estimate
∑∞

t=T+1 r
∗
t . We upper bound r∗t by a probability σt

as follows. Assume first that Gv is a tree. Consider an unbiased random walk X
(b)
0 , X

(b)
1 , . . .

starting at |b| < a ≤ ω on the infinite line (...,−a, ...,−1, 0, 1, ..., a, ...). X
(b)
m is the sum of

m independent ±1 random variables. The central limit theorem implies that there exists a
constant c > 0 such that

Pr(|X(0)

ca2| < a) ≤ e−1/2. (64)

Now for any t and b with |b| < a, we have

Pr(|X(b)
τ | < a, τ = 0, ..., t) ≤ Pr(|X(0)

τ | < a, τ = 0, ..., t) (65)

which is justified with the following game: We have two walks, A and B coupled to each other,
with A starting at position 0 and B at position b, which, w.l.o.g, we shall assume is positive.
The walk is a simple random walk which comes to a halt when either of the walks hits an
absorbing state (that being, −a or a). Since they are coupled, B will win iff they drift (a− b)
to the right from 0 and A will win iff they drift −a to the left from 0. Given the symmetry of
the walk, B has a higher chance of winning.

For t > T , we define σt by

σt = Pr(|X(0)
τ | < a, τ = 0, 1, . . . , t) ≤

(
e−1/2

)⌊t/(ca2)⌋
. (66)

The paths from v to Γ◦
v in the tree satisfy a ≤ ω, and so

∞∑

t=T+1

σt ≤
∞∑

t=T+1

e−t/(3cω2) ≤ e−T/(3cω2)

1− e−1/(3cω2)
= O(ω2e−Θ( logn

ω2 )) = O(ζω)

We now turn to the case where Gv contains a unique light cycle C. Let x be the furthest
vertex of C from v in Gv. This is the only possible place where the random walk is more
likely to get closer to v at the next step. We can see this by considering the breadth first
construction of Gv. Thus we can compare our walk with random walk on [−a, a] where there
is a unique value x < a such that only at ±x is the walk more likely to move towards the
origin and even then this probability is at most 2/3. Using results (64), (65) for the unbiased
walk on the line, we have

Pr(∃τ ≤ ca2 : |X(b)
τ | ≥ x) ≥ 1− e−1/2.
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The probability the particle walks from x to a without returning to the cycle is at least
1/3(a− x). Thus

Pr(∃τ ≤ ca2 : |X(b)
τ+a−x| ≥ a) ≥ (1− e−1/2)/3a ≥ 13

100a
,

and so

σt = Pr(|X(0)
τ | < a, τ = 0, 1, . . . , t) ≤ (1− 13/(100a))⌊t/(2ca

2)⌋ ≤ e−t/(20ca3). (67)

As a ≤ ω,

∞∑

t=T+1

σt ≤
∞∑

t=T+1

e−t/(20cω3) ≤ e−T/(20cω3)

1− e−1/(20cω3)
= O

(
ω3e−O( logn

ω3 )
)
= O(ζω)

2

6.4 Condition (a) of Lemma 2

Lemma 14. For |z| ≤ 1 + λ, there exists a constant ψ > 0 such that |RT (z)| ≥ ψ.

Proof As in Lemma 8, we consider the walk W∗
v on Gv, starting from v, and with

absorption at Γ◦
v. For this walk, let βt be the probability of a first return to v at step t, and

let r∗t be the probability of a return to v at step t.

Let β(z) =
∑T

t=1 βtz
t, let α(z) = 1/(1 − β(z)), and write α(z) =

∑∞
t=0 αtz

t. Thus αt is the
probability of a return to v at time t for a walk W†

v , all of whose excursions from v are length
at most T . Observe that αt ≤ r∗t ≤ rt. We shall prove below that the radius of convergence
of α(z) is at least 1 + Ω(1/ω3).

We can write

RT (z) = α(z) +Q(z)

=
1

1− β(z)
+Q(z), (68)

where Q(z) = Q1(z) +Q2(z), and

Q1(z) =
T∑

t=0

(rt − αt)z
t

Q2(z) = −
∞∑

t=T+1

αtz
t.
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We note that Q(0) = 0, α(0) = 1 and β(0) = 0.

We will show below that
|Q2(z)| = o(1) (69)

for |z| ≤ 1 + 2λ and thus the radius of convergence of Q2(z) (and hence α(z)) is greater than
1 + λ. This will imply that |β(z)| < 1 for |z| ≤ 1 + λ, so that the expression (68) is well
defined. For suppose there exists z0 such that |β(z0)| ≥ 1. Then β(|z0|) ≥ |β(z0)| ≥ 1 and
we can assume (by scaling) that β(|z0|) = 1. We have β(0) < 1 and so we can assume that
β(|z|) < 1 for 0 ≤ |z| < |z0|. But as ρ approaches 1 from below, (68) is valid for z = ρ|z0| and
then |RT (ρ|z0|)| → ∞, contradiction.

Recall that λ = 1/KT . Clearly β(1) ≤ 1 and so for |z| ≤ 1 + λ

β(|z|) ≤ β(1 + λ) ≤ β(1)(1 + λ)T ≤ e1/K .

Using |1/(1− β(z))| ≥ 1/(1 + β(|z|)) we obtain

|RT (z)| ≥
1

1 + β(|z|) − |Q(z)| ≥ 1

1 + e1/K
− |Q(z)|. (70)

We now prove that |Q(z)| = o(1) for |z| ≤ 1 + λ and the lemma will follow.

Turning our attention first to Q1(z), we have

|Q1(z)| ≤ (1 + λ)T |Q1(1)| ≤ e2/K
T∑

t=0

|rt − αt| (71)

From (62), (63) of the proof of Lemma 8, we see that
∑T

t=0 |rt − αt| = o(1), hence |Q1(z)| =
o(1).

We now consider Q2(z). As in Lemma 8, let r∗t be the probability that a walk W∗
v on Gv

starting at v has not been absorbed at Γ◦
v by step t. Then αt ≤ r∗t ≤ σt, so

|Q2(z)| ≤
∞∑

t=T+1

σt|z|t,

In the case where Gv is a tree we can use (66) to prove that the radius of convergence of
Q2(z) is at least e1/(3cω

2) > 1 + 1/(3cω2) > 1 + 2λ, where ω = log log log n is given in (10),
and λ = O(1/ log n). So for |z| ≤ 1 + λ,

|Q2(z)| ≤
∞∑

t=T+1

eλt−t/(3cω2) = o(1).
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In the case that Gv contains a unique cycle, we can use (67) to see that the radius of conver-

gence of Q2(z) is at least e
1

20cω3 > 1 + 2λ. So for |z| ≤ 1 + λ,

|Q2(z)| ≤
∞∑

t=T+1

eλt−t/(20cω3) = o(1).

2
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