Cover time of a random graph with given degree sequence

Mohammed Abdullah * Colin Cooper ${ }^{\dagger} \quad$ Alan Frieze ${ }^{\ddagger}$

April 9, 2012

Abstract

In this paper we establish the cover time of a random graph $G(\mathbf{d})$ chosen uniformly at random from the set of graphs with vertex set $[n]$ and degree sequence \mathbf{d}. We show that under certain restrictions on \mathbf{d}, the cover time of $G(\mathbf{d})$ is whp asymptotic to $\frac{d-1}{d-2} \frac{\theta}{d} n \log n$. Here θ is the average degree and d is the effective minimum degree.

1 Introduction

Let $G=(V, E)$ be a connected graph with $|V|=n$ vertices and $|E|=m$ edges.
For a simple random walk \mathcal{W}_{v} on G starting at a vertex v, let C_{v} be the expected time taken to visit every vertex of G. The vertex cover time $C(G)$ of G is defined as $C(G)=\max _{v \in V} C_{v}$. The vertex cover time of connected graphs has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovász and Rackoff [2] that $C(G) \leq 2 m(n-1)$. It was shown by Feige [8], [9], that for any connected graph G, the cover time satisfies $(1-o(1)) n \log n \leq$ $C(G) \leq(1+o(1)) \frac{4}{27} n^{3}$. Between these two extremal examples, the cover time, both exact and asymptotic, has been determined for a number of different classes of graphs.

In this paper we study the cover time of random graphs $\mathcal{G}(\mathbf{d})$ picked uniformly at random (uar) from the set $\mathcal{G}(\mathbf{d})$ of simple graphs with vertex set $V=[n]$ and degree sequence $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where d_{i} is the degree of vertex $i \in V$. We make the following definitions:

[^0]Let $V_{j}=\left\{i \in V: d_{i}=j\right\}$ and let $n_{j}=\left|V_{j}\right|$. Let $\sum_{i=1}^{n} d_{i}=2 m$ and let $\theta=2 m / n$ be the average degree. We use the notations d_{i} and $d(i)$ for the degree of vertex i.

Let $0<\alpha \leq 1$ be constant, $0<c<1 / 8$ be constant and let d be a positive integer. Let $\gamma=(\sqrt{\log n} / \theta)^{1 / 3}$. We suppose the degree sequence \mathbf{d} satisfies the following conditions:
(i) Average degree $\theta=o(\sqrt{\log n})$.
(ii) Minimum degree $\delta \geq 3$.
(iii) For $\delta \leq i<d, n_{i}=O\left(n^{c i / d}\right)$.
(iv) $n_{d}=\alpha n+o(n)$. We call d the effective minimum degree.
(v) Maximum degree $\Delta=O\left(n^{c(d-1) / d}\right)$.
(vi) Upper tail size $\sum_{j=\gamma \theta}^{\Delta} n_{j}=O(\Delta)$.

We call a degree sequence \mathbf{d} which satisfies conditions (i)-(vi) nice, and apply the same adjective to $\mathcal{G}(\mathbf{d})$. Basically, nice graphs are sparse, with not too many high degree vertices. Any degree sequence with constant maximum degree, and for which $d=\delta$ is nice. The conditions hold in particular, for d-regular graphs, $d \geq 3, d=\delta=o(\sqrt{\log n})$, as condition (iii) is empty. The spaces of graphs we consider are somewhat more general. The condition nice, allows for example, bi-regular graphs where half the vertices are degree $d \geq 3$ and half of degree $a=o(\sqrt{\log n})$.

Conditions (i), (v), (vi) allow us to infer structural properties of $\mathcal{G}(\mathbf{d})$ via the configuration model, in a way that is explained in Section 3.1. The effective minimum degree condition (iv), ensures that some entry in the degree sequence occurs order n times. Condition (iii) is necessary for the analysis of the random walk, as Theorem 1 does not hold when $c>1$, even if the maximum degree is constant. However, the value $c<1 / 8$ in condition (iii) is somewhat arbitrary, as are the precise values in conditions (v), (vi).

It will follow from Lemma 7 that random graphs with a nice degree sequence are connected with high probability (whp). The following theorem gives the cover time of nice graphs.

Theorem 1. Let $G(\boldsymbol{d})$ be chosen uar from $\mathcal{G}(\boldsymbol{d})$, where \boldsymbol{d} is nice. Then whp

$$
\begin{equation*}
C(G(\boldsymbol{d})) \sim \frac{d-1}{d-2} \frac{\theta}{d} n \log n \tag{1}
\end{equation*}
$$

In this paper, the notation whp means with probability $1-n^{-\Omega(1)}$, and $A(n) \sim B(n)$ means $\lim _{n \rightarrow \infty} A(n) / B(n)=1$.

We note that if $d \sim \theta$, i.e. the graph is pseudo-regular, then as long as condition (iii) holds,

$$
C(G) \sim \frac{d-1}{d-2} n \log n
$$

This extends the result of [5] for random d-regular graphs.

Structure of the paper

The proof of Theorem 1 is based on an application of (7) below. Put simply, (7) says that, if we ignore which vertices the random walk visits during the mixing time, the probability a vertex v remains unvisited in the first t steps is asymptotic to $\exp \left(-\pi_{v} t / R_{v}\right)$. Here $\pi_{v}=d(v) / 2 m$ where $d(v)$ is the degree of vertex v and m is the number of edges. The variable R_{v} is the expected number of returns to v during the mixing time, for a walk starting at v. To estimate R_{v} in Section 4.2, we describe and prove the required whp graph properties in Section 3. Lemma 7, proved in the Appendix establishes that nice graphs have constant conductance whp; which implies connectivity as asserted in the introduction. The proof that (7) is valid whp for $\mathcal{G}(\mathbf{d})$ is similar to proofs in earlier papers and is given in the Appendix. The cover time $C(G)$ in (1) is established in Section 5 as follows. Firstly an upper bound of $(1+o(1)) C(G)$ is proved in Section 5.1. In Section 5.2 a lower bound is determined by constructing a set of vertices S such that $\sum_{v \in S} \exp \left(-\pi_{v} t / R_{v}\right) \rightarrow \infty$ at $t=(1-o(1)) C(G)$.

2 Estimating first visit probabilities

In this section G denotes a fixed connected graph with n vertices. A random walk \mathcal{W}_{u} is started from a vertex u. Let $\mathcal{W}_{u}(t)$ be the vertex reached at step t, let P be the matrix of transition probabilities of the walk and let $P_{u}^{(t)}(v)=\operatorname{Pr}\left(\mathcal{W}_{u}(t)=v\right)$. We assume that the random walk \mathcal{W}_{u} on G is ergodic with stationary distribution π, where $\pi_{v}=d(v) /(2 m)$, and $d(v)$ is the degree of vertex v.

Let T be a positive integer such that for $t \geq T$

$$
\begin{equation*}
\max _{u, x \in V}\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq n^{-3} \tag{2}
\end{equation*}
$$

and let

$$
\begin{equation*}
\lambda=\frac{1}{K T} \tag{3}
\end{equation*}
$$

for a sufficiently large constant K. The existence of such a T will follow from (20).

Considering a walk \mathcal{W}_{v}, starting at vertex v, let $r_{t}=\operatorname{Pr}\left(\mathcal{W}_{v}(t)=v\right)$ be the probability that the walk returns to v at step $t=0,1, \ldots$, and let

$$
\begin{equation*}
R_{T}(z)=\sum_{j=0}^{T-1} r_{j} z^{j} \tag{4}
\end{equation*}
$$

Given vertices u, v, let \mathcal{W}_{u} be a random walk starting at vertex u. For $t \geq T$ let $\boldsymbol{A}_{v}(t)$ be the event that \mathcal{W}_{u} does not visit v in steps $T, T+1, \ldots, t$. Several versions of the following lemma have appeared previously (e.g. in [5], [6]). For completeness, a proof is given in Section 6.1 of the Appendix.

Lemma 2. Let $v \in V$ satisfy the following conditions:
(a) For some constant $\psi>0$, we have

$$
\min _{|z| \leq 1+\lambda}\left|R_{T}(z)\right| \geq \psi
$$

where $R_{T}(z)$ is from (4).
(b) $T \pi_{v}=o(1)$ and $T \pi_{v}=\Omega\left(n^{-2}\right)$ for all $v \in V$.

Let

$$
\begin{equation*}
R_{v}=R_{T}(1) . \tag{5}
\end{equation*}
$$

Then there exists

$$
\begin{equation*}
p_{v}=\frac{\pi_{v}}{R_{v}\left(1+O\left(T \pi_{v}\right)\right)}, \tag{6}
\end{equation*}
$$

such that for all $t \geq T$,

$$
\begin{equation*}
\operatorname{Pr}\left(\boldsymbol{A}_{v}(t)\right)=\frac{\left(1+O\left(T \pi_{v}\right)\right)}{\left(1+p_{v}\right)^{t}}+O\left(T^{2} \pi_{v} e^{-\lambda t / 2}\right) \tag{7}
\end{equation*}
$$

3 Graph properties

We make our whp calculations about properties of nice graphs in the configuration model, (see Bollobás [3]). Let $W=[2 m]$ be the set of configuration points and for $i \in[n]$, let $W_{i}=\left[d_{1}+\cdots+d_{i-1}+1, d_{1}+\cdots+d_{i}\right]$. Thus $W_{i}, i=1, \ldots, n$ is a partition of W. For $u \in W_{i}$, define $\phi:[2 m] \rightarrow[n]$ by $\phi(u)=i$. Thus, $\left|W_{i}\right|=d_{i}$, and $\phi(u)$ is the vertex corresponding to the configuration point u. Given a pairing F (i.e. a partition of W into m pairs $\{u, v\}$) we obtain a multi-graph G_{F} with vertex set $[n]$ and an edge $(\phi(u), \phi(v))$ for each $\{u, v\} \in F$.

Choosing a pairing F uniformly at random from among all possible pairings of the points of W produces a random multi-graph G_{F}. Let

$$
\begin{equation*}
\mathcal{F}(2 m)=\frac{(2 m)!}{m!2^{m}} \tag{8}
\end{equation*}
$$

Thus $\mathcal{F}(2 m)$ counts the number of distinct pairings F of the $2 m$ points in W. Moreover the number of pairings corresponding to each simple graph $G \in \mathcal{G}(\mathbf{d})$ is the same, so that simple graphs are equiprobable in the space of multi-graphs. Let $\nu=\sum_{i} d_{i}\left(d_{i}-1\right) /(2 m)$. Assuming that $\Delta=o\left(m^{1 / 3}\right)$, (see e.g. [10]), the probability that G_{F} is simple is given by

$$
\begin{equation*}
P_{S}=\operatorname{Pr}\left(G_{F} \text { is simple }\right) \sim e^{-\frac{\nu}{2}-\frac{\nu^{2}}{4}} . \tag{9}
\end{equation*}
$$

Our assumption that conditions (i)-(vi) hold for d, imply that $\Delta=o\left(m^{1 / 3}\right)$. Also as $\gamma=$ $(\sqrt{\log n} / \theta)^{1 / 3}$, then $\nu=o(\sqrt{\log n})$ follows from

$$
\nu \leq \frac{1}{\theta n}\left(\sum_{j=3}^{\gamma \theta} n_{j} j^{2}+\sum_{j=\gamma \theta}^{\Delta} n_{j} j^{2}\right) \leq \frac{1}{\theta n}\left(n \gamma^{2} \theta^{2}+O\left(\Delta^{3}\right)\right)=o(\sqrt{\log n})
$$

If $\nu=o(\sqrt{\log n})$, then P_{S} in (9) is at least $e^{-o(\log n)}$. On the other hand, statements about graph structure we make in this paper using the configuration model fail with probability at most $n^{-\Omega(1)}$, which means they hold whp for simple graphs.

3.1 Structural properties of $G(\mathbf{d})$

In this section we establish the whp properties of nice graphs needed to estimate R_{v} in (5) for all $v \in V$.

Let C be a large constant, and let

$$
\begin{equation*}
\omega=C \log \log n \tag{10}
\end{equation*}
$$

A cycle or path is small, if it has at most $2 \omega+1$ vertices, otherwise it is large. Let

$$
\begin{equation*}
\ell=B \log ^{2} n \tag{11}
\end{equation*}
$$

for some large constant B. A vertex v is light if it has degree at most ℓ, otherwise it is heavy. A cycle or path is light if all vertices are light. A light vertex v is small if it has degree at most $d-1$.

Lemma 3. Let d be a nice degree sequence and let $G(\boldsymbol{d})$ be chosen uniformly at random from the $\mathcal{G}(\boldsymbol{d})$. There exists $\epsilon>0$ constant such that with with probability $1-O\left(n^{-\epsilon}\right)$,
(a) No vertex disjoint pair of small light cycles are joined by a small light path.
(b) No light vertex is in two small light cycles.
(c) No small cycle contains a heavy vertex or small vertex, or is connected to a heavy or small vertex by a small path.
(d) No pair of small or heavy vertices is connected by a small path.

Proof We note a useful inequality. For integer $x>0$, let $\mathcal{F}(2 x)=\frac{(2 x)!}{2^{x} x!}$, as defined in (8), then

$$
\begin{equation*}
\frac{\mathcal{F}(\theta n-2 x)}{\mathcal{F}(\theta n)}=\frac{(\theta n-2 x)!}{\left(\frac{\theta n}{2}-x\right)!2^{\frac{\theta n}{2}-x}} \frac{\left(\frac{\theta n}{2}\right)!2^{\frac{\theta n}{2}}}{(\theta n)!}=\left(\prod_{i=1}^{x} \theta n-2 i+1\right)^{-1} \leq\left(\frac{1}{\theta n-2 x+1}\right)^{x} \tag{12}
\end{equation*}
$$

(a) Let S denote the sum over a, b, c of the expected number of subgraphs consisting of small light vertex cycles of length a, b joined by a small light vertex path of length $c+1$. Then

$$
\begin{equation*}
S \leq \sum_{a=3}^{2 \omega+1} \sum_{b=3}^{2 \omega+1} \sum_{c=0}^{2 \omega+1}\binom{n}{a}\binom{n}{b}\binom{n}{c} \frac{(a-1)!}{2} \frac{(b-1)!}{2} c!a b \ell^{2(a+b+c+1)} \frac{\mathcal{F}(\theta n-2(a+b+c+1))}{\mathcal{F}(\theta n)} \tag{13}
\end{equation*}
$$

Explanation. Choose a vertices for one cycle, b vertices for the other and c vertices for the path. Each light vertex has most $\ell(\ell-1)$ ways to connect to its neighbours on a given path or cycle. This explains the exponent of ℓ. Choosing $x=(a+b+c+1) \leq 6 \omega+4$ in (12), we find S is bounded by

$$
\begin{align*}
S & \leq \sum_{a=3}^{2 \omega+1} \sum_{b=3}^{2 \omega+1} \sum_{c=0}^{2 \omega+1} n^{a} n^{b} n^{c} \ell^{2(a+b+c+1)}\left(\frac{1}{\theta n-(12 \omega+8)}\right)^{a+b+c+1} \\
& \leq \frac{\ell^{2}}{\theta n-(12 \omega+8)} \sum_{a} \sum_{b} \sum_{c}\left(\frac{n \ell^{2}}{\theta n-(12 \omega+8)}\right)^{a+b+c} \\
& =O\left(\frac{\omega^{3} \ell^{12 \omega+8}}{\theta n}\right)=o(1) . \tag{14}
\end{align*}
$$

(b) The proof for this part is similar to (a).
(c) Note that, in condition (vi), the value of $\gamma \theta<\ell$ and thus the number, H, of heavy vertices is $O(\Delta)=O\left(n^{c(d-1) / d}\right)$. Similarly, from condition (iii), the number of small vertices is $O\left(n^{c(d-1) / d}\right)$. The expected number S of cycles of length $3 \leq a \leq 2 \omega+1$ with $a-k$ light vertices and $k \geq 1$ heavy vertices can be bounded by the expected number of configuration pairings of cycles of this type. Thus

$$
S \leq \sum_{a=3}^{2 \omega+1} \sum_{k \geq 1}\binom{n}{a-k}\binom{H}{k}(a-1)!\ell^{2(a-k)} \Delta^{2 k} \frac{\mathcal{F}(\theta n-2 a)}{\mathcal{F}(\theta n)}
$$

Thus, using (12), we have

$$
\begin{aligned}
S & =O(1) \sum_{a} \sum_{k \geq 1}\binom{a}{k} n^{-k} \Delta^{3 k} \ell^{2 a} \\
& =O(1) \sum_{a} \ell^{2 a} \frac{a \Delta^{3}}{n} \\
& =O\left(\omega^{2}\right) \frac{\ell^{4 \omega+2} \Delta^{3}}{n}=o(1) .
\end{aligned}
$$

We next count the expected number S of cycles of lengths $3 \leq a \leq 2 \omega+1$ containing only light vertices, which are joined to a heavy vertex by a light vertex path of length $0 \leq b-1 \leq 2 \omega$. This can be bounded by

$$
\begin{aligned}
S & \leq \sum_{a=3}^{2 \omega+1} \sum_{b=1}^{2 \omega+1}\binom{n}{a}\binom{n}{b-1}\binom{H}{1}(a-1)!(b-1)!\ell^{2 a+2(b-1)+1} a \Delta \frac{\mathcal{F}(\theta n-2(a+b))}{\mathcal{F}(\theta n)} \\
& =O\left(\omega^{2}\right) \frac{\ell^{6 \omega+4} \Delta^{2}}{n}=o(1) .
\end{aligned}
$$

(d) There are $H=O(\Delta)$ small or heavy vertices. The expected number S of small light paths length connecting such vertices is

$$
\begin{aligned}
S & \leq \sum_{a=0}^{2 \omega+1}\binom{n}{a}\binom{H}{2} a!\ell^{2 a} \Delta^{2} \frac{\mathcal{F}(\theta n-2(a+1))}{\mathcal{F}(\theta n)} \\
& =O\left(\frac{\omega \ell^{4 \omega+2} \Delta^{4}}{n}\right) .
\end{aligned}
$$

For a vertex v, let G_{v} be the subgraph induced by the set of vertices within a distance ω of v. As any paths or cycles contained in G_{v} are of length at most $2 \omega+1$ and hence small, the following lemma is a corollary of Lemma 3.

Lemma 4. Let $G(\boldsymbol{d})$ be nice. Assuming the conditions (a)-(d) of Lemma 3 hold, then
(a) If G_{v} contains a small or heavy vertex, G_{v} is a tree.
(b) If G_{v} is not a tree, then G_{v} contains exactly one small cycle, and all vertices of G_{v} are light.
(c) There are $O\left(\ell^{\omega} n^{c i / d}\right)$ vertices v such that G_{v} contains a small vertex of degree i.
(d) There are $O\left(\ell^{\omega} n^{2 c(d-1) / d}\right)$ vertices v such that G_{v} contains a heavy vertex.

Proof If G_{v} contains a small or heavy vertex then it is a tree, and all other vertices are light. Thus $\left|G_{v}\right|=O\left(\ell^{\omega}\right)$ for small vertices, and there are $O\left(n^{c i / d}\right)$ small vertices of degree i. If G_{v} contains a heavy vertex then $\left|G_{v}\right|=O\left(\Delta \ell^{\omega}\right)$.

Lemma 5. Let d be a nice degree sequence and let $G(\boldsymbol{d})$ be chosen uniformly at random from the $\mathcal{G}(\boldsymbol{d})$. For any $\epsilon>0$ constant, with probability $1-O\left(n^{-\epsilon}\right)$, there are at most $n^{4 \epsilon}$ vertices v such that G_{v} contains a cycle.

Proof The expected number of vertices on small light cycles is at most

$$
\begin{aligned}
S & \leq \sum_{a=3}^{2 \omega+1}\binom{n}{a} \frac{(a-1)!}{2} \ell^{2 a} \frac{\mathcal{F}(\theta n-2 a)}{\mathcal{F}(\theta n)} \\
& =O\left(\omega \ell^{4 \omega+2}\right)
\end{aligned}
$$

The probability there are more than n^{ϵ} vertices on small light cycles is $o\left(n^{-\epsilon / 2}\right)$, for any $\epsilon>0$. If G_{v} contains only light vertices, then $\left|G_{v}\right|=O\left(\ell^{\omega}\right)$, and thus (whp) there are at most $n^{2 \epsilon}$ vertices v such that G_{v} contains a small light cycle.

A vertex v is d-compliant, if G_{v} is a tree, and all vertices of G_{v} have degree at least d. A vertex v is d-tree-like to depth h if the graph induced by the vertices at distance at most h from v form a d-regular tree, (i.e. all vertices on levels $0,1, \ldots, h-1$ have degree d).

A vertex v is d-tree-regular, if it is d-tree-like to depth h, d-compliant to depth ω and all vertices of G_{v} are light. For such a vertex v, the first h levels of the BFS tree, really are a d-regular tree, and the remaining $\omega-h$ levels can be pruned to a d-regular tree. We choose the following value for h, which depends on θ.

$$
\begin{equation*}
h=\frac{1}{\log d} \log \left(\frac{\log n}{(\log \log n) \log \theta}\right) \tag{15}
\end{equation*}
$$

The exact value of h is not so important. The main thing is that $d^{h} \rightarrow \infty$ in Lemma 9, but not too fast in Lemma 6.

Lemma 6. Let d be a nice degree sequence and let $G(\boldsymbol{d})$ be chosen uniformly at random from the $\mathcal{G}(\boldsymbol{d})$. There exists $\epsilon>0$ constant such that with with probability $1-O\left(n^{-\epsilon}\right)$, there are $n^{1-O(1 / \log \log n)} d$-tree-regular vertices.

Proof Recall that $n_{d}=\left|V_{d}\right|=\alpha n+o(n)$ for some constant $\alpha>0$. We assume from Lemmas 4 and 5 that all but $O\left(n^{\epsilon}\right)+O\left(\ell^{\omega} \Delta^{2}\right)$ vertices of degree d are d-compliant, or have a heavy vertex within distance ω.

Let $N_{2}=1+d(d-1)^{h}$. If v has degree d and is d-tree-like to depth h, then the tree of this depth rooted at v contains less than N_{2} vertices. We bound the probability P that a vertex
v of degree $d(v)=d$ is d-tree-like, by bounding the probability of success of the construction of a d-regular tree of depth h in the configuration model.

$$
\begin{equation*}
P=\operatorname{Pr}(\text { vertex } v \text { is } d \text {-tree-like })=\prod_{i=1}^{N_{2}-1} \frac{d\left(n_{d}-i\right)}{\theta n-2 i+1} \geq\left(d \frac{n_{d}-N_{2}}{\theta n}\right)^{N_{2}} \tag{16}
\end{equation*}
$$

Let M count the number of d-tree-like vertices, then $\mathbf{E}[M]=\mu=n_{d} P$, and for the value of h given in (15) we have that

$$
\begin{equation*}
\mu=\mathbf{E}[M]=n^{1-O(1 / \log \log n)} \tag{17}
\end{equation*}
$$

To estimate $\operatorname{Var}[M]$, let I_{v} be the indicator that vertex v is d-tree-like. We have

$$
\begin{equation*}
\mathbf{E}\left[M^{2}\right]=\mu+\sum_{v \in V_{d}} \sum_{w \in V_{d}, w \neq v} \mathbf{E}\left[I_{v} I_{w}\right] \tag{18}
\end{equation*}
$$

and

$$
\mathbf{E}\left[I_{v} I_{w}\right]=\operatorname{Pr}\left(v, w \text { are } d \text {-tree-like, } G_{v} \cap G_{w}=\emptyset\right)+\operatorname{Pr}\left(v, w \text { are } d \text {-tree-like, } G_{v} \cap G_{w} \neq \emptyset\right)
$$

Now

$$
\begin{equation*}
\operatorname{Pr}\left(v, w \text { are } d \text {-tree-like, } G_{v} \cap G_{w}=\emptyset\right)=\prod_{i=1}^{2 N_{2}-2} \frac{d\left(n_{d}-i-1\right)}{\theta n-2 i+1} \leq P^{2} \tag{19}
\end{equation*}
$$

For any vertex v, the number of vertices w such that $G_{v} \cap G_{w} \neq \emptyset$ is bounded from above by $N_{2}+d N_{2}^{2}$. Using this and (19), we can bound (18) from above by $\mu+\mu^{2}+\mu\left(N_{2}+d N_{2}^{2}\right)$.

By the Chebychev Inequality, for some constant $0<\tilde{\epsilon}<1$,

$$
\operatorname{Pr}\left(|M-\mu|>\mu^{\frac{1}{2}+\tilde{\epsilon}}\right) \leq \frac{\operatorname{Var}[M]}{\mu^{1+2 \tilde{\epsilon}}}=\frac{\mathbf{E}\left[M^{2}\right]-\mathbf{E}[M]^{2}}{\mu^{1+2 \tilde{\epsilon}}} \leq \frac{\mu+\mu N_{2}+\mu d N_{2}^{2}}{\mu^{1+2 \tilde{\epsilon}}}=O\left(n^{-\epsilon}\right)
$$

The lemma now follows from (17).

4 Random walk properties

4.1 Mixing time

Given a graph G, the conductance $\Phi(G)$ of a random walk \mathcal{W}_{u} on G is defined by

$$
\Phi(G)=\min _{\pi(S) \leq 1 / 2} \frac{e(S: \bar{S})}{d(S)}
$$

where $d(S)=\sum_{v \in S} d(v), \pi(S)=d(S) / 2 m$, and $e(A: B)$ denotes the number of edges with one endpoint in A and the other in B. The lemma below follows by applying (9) to Lemma 12 proved in Section 6.2 of the Appendix.

Lemma 7. Let d be a nice degree sequence and let $G(\boldsymbol{d})$ be chosen uniformly at random from the $\mathcal{G}(\boldsymbol{d})$, then with probability $1-O\left(n^{-1 / 9}\right)$

$$
\Phi(G) \geq \frac{1}{100}
$$

Note that $\Phi(G) \geq 1 / 100$ in Lemma 7 implies $G(\mathbf{d})$ is connected.
We note a result from Sinclair [11], that

$$
\begin{equation*}
\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq\left(\pi_{x} / \pi_{u}\right)^{1 / 2}\left(1-\Phi^{2} / 2\right)^{t} . \tag{20}
\end{equation*}
$$

Referring to Lemma 7 and (20), if we choose A sufficiently large and

$$
\begin{equation*}
T=A \log n \tag{21}
\end{equation*}
$$

then (2) holds. There is a technical point here, in that the result (20) assumes that the walk is lazy. A lazy walk moves to a neighbour with probability $1 / 2$ at any step. This assumption halves the conductance, and doubles the value of $R_{T}(1)$. Asymptotically, the cover time is also doubled by the inclusion of the lazy steps. The trajectory, and hence cover time of the underlying (non-lazy) walk can be recovered by removing the lazy steps. We will ignore the assumption in (20) for the rest of the paper; and continue as though there are no lazy steps.

4.2 Expected number of returns in the mixing time

Escape probability. Let $v \in V$, and $B \subseteq V$, and assume $v \notin B$. For a walk $\mathcal{W}_{v}{ }^{B}$ starting at v, let $P_{v}(B)$ be the probability that the walk reaches B without return to v; the escape probability from v to B. The value of $P_{v}(B)$ is given by

$$
\begin{equation*}
P_{v}(B)=\frac{1}{d(v) R_{\mathrm{eff}}(v, B)} \tag{22}
\end{equation*}
$$

where $R_{\text {eff }}(v, B)$ is the effective resistance between v and B, treating the edges as having unit resistance. If we treat B as an absorbing state, then $f_{v}(B)=1-P_{v}(B)$ is the probability of a first return to v by $\mathcal{W}_{v}{ }^{B}$ before absorption at B; and $R_{v}(B)=1 /\left(1-f_{v}(B)\right)=1 / P_{v}(B)$ is the expected number of returns to v before absorption at B.

The attractiveness of formula (22) is that by Rayleigh's monotonicity law, deleting edges of the graph does not decrease the effective resistance between v and B. Thus provided we do not delete any edges incident with v, such pruning cannot increase $P_{v}(B)$. See [7] for details of Rayleigh's monotonicity law, and a proof of (22).

For a vertex v, we defined G_{v} as the subgraph induced by the set of vertices within a distance ω of v. Denote by Γ_{v}° those vertices of G_{v} at distance exactly ω from v. The following lemma relates R_{v} in (5) of Lemma 2 to $R_{v}^{*}=R_{v}\left(\Gamma_{v}^{\circ}\right)$ obtained from (22) as described above.

Lemma 8. Let $G(\boldsymbol{d})$ be nice, and assume the conditions of Lemma 3 and Lemma 7 hold. Let \mathcal{W}_{v}^{*} denote a walk on G_{v} starting at v with Γ_{v}° made into an absorbing state. Let $R_{v}^{*}=\sum_{t=0}^{\infty} r_{t}^{*}$, where r_{t}^{*} is the probability that \mathcal{W}_{v}^{*} is at vertex v at time t. Let R_{v} be given by (5), then

$$
R_{v}=R_{v}^{*}+o\left(\frac{1}{\log n}\right)
$$

For completeness the proof of Lemma 8 is given in Section 6.3 of the Appendix. A similar proof is given in e.g. [5]. The precise value of R_{v}^{*} is given by (22). The next lemma gives some approximate bounds.

Lemma 9. For a vertex $v \in V$, let \mathcal{W}_{v}^{*} be a walk on G_{v}, starting at v, and with Γ_{v}° made into an absorbing state. Let $P_{v}\left(\Gamma_{v}^{\circ}\right)$ be the escape probability of a walk, and let $R_{v}^{*}=1 / P_{v}\left(\Gamma_{v}^{\circ}\right)$.
(a) If v is d-tree-regular, then $R_{v}^{*}=\frac{d-1}{d-2}(1+o(1))$.
(b) If v is d-compliant then $R_{v}^{*} \leq \frac{d-1}{d-2}(1+o(1))$.
(c) If G_{v} is a tree, $R_{v}^{*} \leq \frac{\delta-1}{\delta-2}(1+o(1))$.
(d) If G_{v} contains a single cycle, and all vertices of G_{v} have degree at least d, then $R_{v}^{*} \leq \frac{d(d-1)}{(d-2)^{2}}(1+o(1))$.

Proof (a)

For a biased random walk on the half-line $(0,1, \ldots, k)$, starting at vertex i, with absorbing states $0, k$, and with transition probabilities at vertices $(1, \ldots, k-1)$ of $q=\operatorname{Pr}$ (move left), $p=\operatorname{Pr}($ move right $)$; then

$$
\begin{equation*}
\operatorname{Pr}(\text { absorption at } k)=\frac{1-(q / p)^{i}}{1-(q / p)^{k}} \tag{23}
\end{equation*}
$$

We first project \mathcal{W}_{v}^{*} onto $(0,1, \ldots, h)$ with $p=\frac{d-1}{d}$ and $q=\frac{1}{d}$. As v is d-tree-like, the probability $Q(h)$ of escaping from v to level h of the d-regular tree of depth h rooted at v is

$$
Q(h)=\frac{1-\frac{1}{d-1}}{1-\left(\frac{1}{d-1}\right)^{h}}
$$

Thus for h given by (15), $(d-1)^{h} \rightarrow \infty$ and

$$
P_{v}\left(\Gamma_{v}^{\circ}\right) \leq Q(h)=(1+o(1)) \frac{d-2}{d-1}
$$

On the other hand G_{v} is d-compliant so, by pruning, contains a d-regular subtree, and

$$
P_{v}\left(\Gamma_{v}^{\circ}\right) \geq \frac{1-\frac{1}{d-1}}{1-\left(\frac{1}{d-1}\right)^{\omega}}=(1+o(1)) \frac{d-2}{d-1}
$$

(b) We can find a lower bound on the escape probability as follows. Retain all edges incident with v. Working outward from the neighbours of v, prune all internal vertices of G_{v} down to degree d, to obtain a subtree Λ_{v} of G_{v} in which v has degree $d(v)$ as in G_{v}. Let Λ_{v}° be its leaves, and $P_{v}\left(\Lambda_{v}^{\circ}\right)$ the escape probability from v to Λ_{v}° in Λ_{v}. Then by considering effective resistance, in (22)

$$
P_{v}\left(\Gamma_{v}^{\circ}\right) \geq P_{v}\left(\Lambda_{v}^{\circ}\right)=(1+o(1)) \frac{d-2}{d-1}
$$

(c) If G_{v} is a tree, but has some vertex w of degree $\delta \leq d(w)<d$, then, we can prune the internal vertices of $G_{v}-\{v\}$ to a δ-regular tree. By arguments similar to (b), $P_{v}\left(\Gamma_{v}^{\circ}\right) \geq$ $(1+o(1))(\delta-2) /(\delta-1)$.
(d) If G_{v} contains a unique cycle, and all vertices in G_{v} have degree at least d, the arguments in (a) can be modified to fit this case. By assumption, there are at most two cycle edges incident with v, and $d(v) \geq d$ so

$$
P_{v}\left(\Gamma_{v}^{\circ}\right) \geq \frac{d-2}{d} \frac{d-2}{d-1}+\frac{2}{d} \Phi
$$

where $\Phi \geq 0$ is the probability of no return to v given a cycle edge, or an edge on a path to a cycle was taken at v.

At this point, a brief summary may be useful.

- G_{v} is a vertex induced subgraph of G. Up to absorption at Γ_{v}°, the boundary of G_{v}, a walk starting from v in G is identically coupled with a walk on G_{v}.
- The escape probability $P_{v}\left(\Gamma_{v}^{\circ}\right)$ from v of the walk \mathcal{W}_{v}^{*} has a precise value. For d-treeregular vertices v it can be approximated by $P_{v}\left(\Gamma_{v}^{\circ}\right)=(d-2) /(d-1)\left(1+O\left(1 / d^{h}\right)\right)$. Our choice of h (see (15)) ensures the error term is $o(1)$.
- By choosing $\omega=C \log \log n$ as in (10), and C sufficiently large, $1 / R_{v}$ can be written as

$$
\begin{equation*}
\frac{1}{R_{v}}=P_{v}\left(\Gamma_{v}^{\circ}\right)+o\left(\frac{1}{\log n}\right) \tag{24}
\end{equation*}
$$

The $o(1 / \log n)$ accuracy is needed in the proof of the lower bound on the cover time.

5 Cover time of $G(\mathbf{d})$

5.1 Upper bound on cover time

Let $T_{G}(u)$ be the time taken by the random walk \mathcal{W}_{u} to visit every vertex of a connected graph G. Let U_{t} be the number of vertices of G which have not been visited by \mathcal{W}_{u} at step t. We note the following:

$$
\begin{align*}
C_{u}=\mathbf{E}\left[T_{G}(u)\right] & =\sum_{t>0} \operatorname{Pr}\left(T_{G}(u) \geq t\right) \tag{25}\\
\operatorname{Pr}\left(T_{G}(u) \geq t\right)=\operatorname{Pr}\left(T_{G}(u)>t-1\right) & =\operatorname{Pr}\left(U_{t-1}>0\right) \leq \min \left\{1, \mathbf{E}\left[U_{t-1}\right]\right\} \tag{26}
\end{align*}
$$

Recall from (7) that $\boldsymbol{A}_{s}(v)$ is the event that vertex v has not been visited during steps $T, T+1, \ldots, s$. It follows from (25), (26) that

$$
\begin{equation*}
C_{u} \leq t+1+\sum_{s \geq t} \mathbf{E}\left[U_{s}\right] \leq t+1+\sum_{v} \sum_{s \geq t} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) \tag{27}
\end{equation*}
$$

Let $t_{0}=\left(\frac{d-1}{d-2} \frac{\theta}{d}\right) n \log n$ and $t_{1}=(1+\epsilon) t_{0}$, were $\epsilon=o(1)$ is sufficiently large that all inequalities claimed below hold. We assume that Lemma 7 holds, and also the high probability claims of Section 3. Thus Lemma 8 and Lemma 9 give values of R_{v} for all $v \in V$. In Section 6.4 of the Appendix, we establish that Condition (a) of Lemma 2 holds. The maximum degree of any vertex is $n^{a}, a<1$, and $T=A \log n$ (see (21)), so Condition (b) of Lemma 2 that $T \pi_{v}=o(1)$, holds trivially.

Recall from (6) that $p_{v}=\left(1+O\left(T \pi_{v}\right)\right) d(v) /\left(\theta n R_{v}\right)$. Thus by (7), the probability that \mathcal{W}_{u} has not visited v during $[T, t]$ is given by

$$
\begin{align*}
\operatorname{Pr}\left(\boldsymbol{A}_{t}(v)\right) & =(1+o(1)) e^{-t p_{v}}+O\left(T^{2} \pi_{v} e^{-\lambda t / 2}\right) \tag{28}\\
& =(1+o(1)) e^{-t p_{v}} \tag{29}
\end{align*}
$$

Thus

$$
\begin{align*}
\sum_{t \geq t_{1}}(1+o(1)) e^{-t p_{v}} & =(1+o(1)) e^{-t_{1} p_{v}} \sum_{\left(t-t_{1}\right) \geq 0} e^{-\left(t-t_{1}\right) p_{v}} \\
& =\frac{(1+o(1))}{1-e^{-p_{v}}} e^{-t_{1} p_{v}} \\
& =O(1) \frac{\theta n R_{v}}{d(v)} \exp \left\{-(1+\Theta(\epsilon)) \frac{d(v)}{d} \frac{d-1}{d-2} \frac{\log n}{R_{v}}\right\} \tag{30}
\end{align*}
$$

We consider the following partition of V :
(i) $V_{A}=\bigcup_{v}\left\{G_{v}\right.$ contains a small vertex $\}$.
(ii) $V_{B}=\bigcup_{i \geq d}\{d(v)=i: v$ is d-compliant $\}$.
(iii) $V_{C}=\bigcup_{i \geq d}\left\{d(v)=i: G_{v}\right.$ contains a cycle $\}$.

Case (i): G_{v} contains a small vertex.
By Lemma 4(c) there are $O\left(\ell^{\omega} n^{c i / / d}\right)$ vertices v for which G_{v} contains a vertex of degree $i<d$, By Lemma $9(\mathrm{c}), R_{v} \leq(1+o(1)) \frac{\delta-1}{\delta-2}$. Also G_{v} can contain at most one small vertex of degree $i<d$, so $d(v) \geq i$. Thus (30) is bounded by

$$
O(\theta n) n^{-(1+o(1)) \frac{i}{d} \frac{d-1}{d-2} \frac{\delta-2}{\delta-1}} \leq O(\theta n) n^{-(1+o(1)) \frac{i}{d} \frac{\delta(\delta-2)}{(\delta-1)^{2}}}
$$

The term $\delta(\delta-2) /(\delta-1)^{2} \geq 3 / 4$, whereas $c<1 / 8$. Thus

$$
\sum_{\delta \leq i<d} \sum_{v \in V_{i}} \sum_{t \geq t_{1}}(1+o(1)) e^{-t p_{v}} \leq O(\theta n) \sum_{\delta \leq i<d} n^{c i / d} n^{-(1+o(1)) 3 i / 4 d}=o\left(t_{1}\right) .
$$

Case (ii): $d \leq d(v), v$ is d-compliant.
Note that this includes the d-tree-regular case. For $v \in V_{B}(30)$ is bounded by $O(\theta) n^{-\Theta(\epsilon)}$.
Therefore

$$
\sum_{v \in V_{B}} \sum_{t \geq t_{1}}(1+o(1)) e^{-t p_{v}} \leq \sum_{v \in V_{B}} O(\theta) n^{-\Theta(\epsilon)}=O(\theta n) n^{-\Theta(\epsilon)}=o\left(t_{1}\right)
$$

Case (iii): $d \leq d(v), G_{v}$ contains a cycle.
These vertices $v \in V_{C}, R_{v}$ is given by Lemma $9(\mathrm{~d})$. Thus (30) is bounded by $O(\theta n) n^{-(1+\Theta(\epsilon)) \frac{d(d-1)}{(d-2)^{2}}}$. By Lemma $4,\left|V_{C}\right| \leq n^{\epsilon^{\prime}}$ where $\epsilon^{\prime}>0$ arbitrarily small, and so we choose $2 \epsilon^{\prime}<d(d-1) /(d-2)^{2}$. Hence

$$
\begin{aligned}
\sum_{v \in V_{C}} \sum_{t \geq t_{1}}(1+o(1)) e^{-t p_{v}} & =\sum_{v \in V_{C}} O(\theta n) n^{-\left(1+\Theta(\epsilon) \frac{d(d-1)}{(d-2)^{2}}\right.} \\
& =O(\theta n) n^{\epsilon^{\prime}} n^{-(1+\Theta(\epsilon)) \frac{d(d-1)}{(d-2)^{2}}} \\
& =o\left(t_{1}\right) .
\end{aligned}
$$

In each of the cases above, the term $\sum_{v} \sum_{s \geq t} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right)=o\left(t_{1}\right)$. Thus, from (27), $C_{u} \leq$ $(1+o(1)) t_{1}$ as required. This completes the proof of the upper bound on cover time of $G(\mathbf{d})$.

5.2 Lower bound on cover time

Let $t_{2}=(1-\epsilon) t_{0}$, were $\epsilon=o(1)$ is sufficiently large that all inequalities claimed below hold. To establish the lower bound, we exhibit a set of vertices S for which, the probability the set
S is covered by a walk \mathcal{W}_{u} at time t_{2}, tends to zero. Hence $T_{G}(u)>t_{2}$, whp which implies that $C(G) \geq t_{0}-o\left(t_{0}\right)$.

We construct S as follows. Let S_{d} be the set of d-tree-regular vertices. Lemma 6 tells us that $\left|S_{d}\right|=n^{1-o(1)}$. Let $\omega=C \log \log n$ for some large C, as in (10). Let S be a maximal subset of S_{d} such that the distance between any two elements of S is least $2 \omega+1$. Thus $|S|=\Omega\left(n^{1-o(1)} / \ell^{2 \omega}\right)$.

Let $S(t)$ denote the subset of S which is still un-visited after step t of \mathcal{W}_{u}. Let $v \in S$, then

$$
\operatorname{Pr}\left(\boldsymbol{A}_{v}\left(t_{2}\right)\right)=(1+o(1)) e^{-t_{2} p_{v}\left(1-O\left(p_{v}\right)\right)}+o\left(n^{-2}\right)
$$

Hence

$$
\begin{align*}
\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\right) & \geq(1+o(1))|S| e^{-(1-\epsilon) t_{0} p_{v}}-O(T) \tag{31}\\
& =\Omega\left(\frac{n^{\epsilon / 2-o(1)}}{\ell^{2 \omega}}\right) \rightarrow \infty . \tag{32}
\end{align*}
$$

The term $O(T)$ above, counts vertices of S visited during the first T steps of the walk. Let $Y_{v, t}$ be the indicator for the event $\boldsymbol{A}_{t}(v)$. Let $Z=\{v, w\} \subset S$. We will show (below) that that for $v, w \in S$

$$
\begin{equation*}
\mathbf{E}\left(Y_{v, t_{2}} Y_{w, t_{2}}\right)=\frac{1+O\left(T \pi_{v}\right)}{\left(1+p_{Z}\right)^{t_{2}}}+o\left(n^{-2}\right) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{Z}=p_{v}+p_{w}+o\left(\frac{d}{\theta n \log n}\right) . \tag{34}
\end{equation*}
$$

Thus

$$
\mathbf{E}\left(Y_{v, t_{2}} Y_{w, t_{2}}\right)=(1+o(1)) \mathbf{E}\left(Y_{v, t_{2}}\right) \mathbf{E}\left(Y_{w, t_{2}}\right)
$$

which implies

$$
\begin{equation*}
\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\left(\left|S\left(t_{2}\right)\right|-1\right)\right) \sim \mathbf{E}\left(\left|S\left(t_{2}\right)\right|\right)\left(\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\right)-1\right) . \tag{35}
\end{equation*}
$$

It follows from (32) and (35), that

$$
\operatorname{Pr}\left(S\left(t_{2}\right) \neq \emptyset\right) \geq \frac{\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\right)^{2}}{\mathbf{E}\left(\left|S\left(t_{2}\right)\right|^{2}\right)}=\frac{1}{\frac{\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\left(\left|S\left(t_{2}\right)\right|-1\right)\right)}{\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\right)^{2}}+\mathbf{E}\left(\left|S\left(t_{2}\right)\right|\right)^{-1}}=1-o(1)
$$

Proof of (33)-(34). Let \widehat{G} be obtained from G by merging v, w into a single vertex Z. Let ρ be the expected number of passages between v, w in T steps. By construction, as G_{w} is a tree, whenever the walk arrives at Γ_{w}° after leaving v it will have to traverse a unique path of length ω to reach w. Using (23) and arguments similar to Lemma 9, we find $\rho=O\left(T^{2} /(d-1)^{\omega}\right)=o(1 / \log n)$. Thus Lemma 8 is valid for \widehat{G}.

There is a natural measure-preserving map from the set of walks in G which start at u and do not visit v or w, to the corresponding set of walks in \widehat{G} which do not visit Z. Thus
the probability that \mathcal{W}_{u} does not visit v or w in steps $T \ldots t$ is asymptotically equal to the probability that a random walk $\widehat{\mathcal{W}}_{u}$ in \widehat{G} which also starts at u does not visit Z in steps $T \ldots t$. The detailed argument is given in [6].

We apply Lemma 2 to \widehat{G}. The value of $\pi_{Z}=2 d / \theta n$. The vertex Z has degree $2 d$ and G_{Z} is otherwise d-tree-regular, as G_{v}, G_{w} are vertex disjoint. The derivation of R_{Z}^{*}, can be made as follows. The escape probability from Z to Γ_{Z}° is given by

$$
P_{Z}\left(\Gamma_{Z}^{\circ}\right)=\frac{1}{2}\left(P_{v}\left(\Gamma_{v}^{\circ}\right)+P_{w}\left(\Gamma_{w}^{\circ}\right)\right),
$$

as with probability $1 / 2$ the walk takes a v-edge at Z and escapes to Γ_{v}° etc. Thus, as claimed in (34),

$$
p_{Z}=\frac{\pi_{Z}}{R_{Z}}\left(1+O\left(T \pi_{Z}\right)\right)=\frac{2 d}{\theta n}\left(P_{Z}\left(\Gamma_{Z}^{\circ}\right)+o(1 / \log n)\right)=p_{v}+p_{w}+o(d / \theta n \log n)
$$

Acknowledgement: We thank several referees whose insight, hard work and detailed critique has helped to make this paper correct and (hopefully) more readable.

References

[1] D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs, http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html.
[2] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász and C. Rackoff. Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science, (1979) 218-223.
[3] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal on Combinatorics, 1 (1980) 311-316.
[4] J. Brown and R. Churchill, Complex Variables and Applications, (Sixth Edition) McGrawHill (1996).
[5] C. Cooper and A. M. Frieze. The cover time of random regular graphs. SIAM Journal on Discrete Mathematics, 18 (2005) 728-740.
[6] C. Cooper and A. M. Frieze. The cover time of the giant component of a random graph. Random Structures and Algorithms, 32 (2008) 401-439.
[7] P. G. Doyle and J. L. Snell Random Walks and Electrical Networks. Carus Mathematical Monograph 22, AMA (1984).
[8] U. Feige, A tight upper bound for the cover time of random walks on graphs. Random Structures and Algorithms, 6 (1995) 51-54.
[9] U. Feige, A tight lower bound for the cover time of random walks on graphs. Random Structures and Algorithms, 6 (1995) 433-438.
[10] B. McKay and N. Wormald. Asymptotic enumeration by degree sequence of graphs with degrees o($n^{1 / 2}$). Combinatorica, 11 (1991), 369-382.
[11] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combinatorics, Probability and Computing, 1 (1992), 351-370.
[12] H. Wilf, Generatingfunctionology, Academic Press (1990).

6 Appendix

6.1 Proof of Lemma 2

Generating function formulation

Let $d_{t}=\max _{u, x \in V}\left|P_{u}^{(t)}(x)-\pi_{x}\right|$, and let T be such that, for $t \geq T$

$$
\begin{equation*}
\max _{u, x \in V}\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq n^{-3} \tag{36}
\end{equation*}
$$

It follows from e.g. Aldous and Fill [1] that $d_{s+t} \leq 2 d_{s} d_{t}$ and so for $k \geq 1$,

$$
\begin{equation*}
\max _{u, x \in V}\left|P_{u}^{(k T)}(x)-\pi_{x}\right| \leq \frac{2^{k-1}}{n^{3 k}} \tag{37}
\end{equation*}
$$

Fix two vertices u, v. Let $h_{t}=\operatorname{Pr}\left(\mathcal{W}_{u}(t)=v\right)$ be the probability that the walk \mathcal{W}_{u} visits v at step t. Let

$$
\begin{equation*}
H(z)=\sum_{t=T}^{\infty} h_{t} z^{t} \tag{38}
\end{equation*}
$$

generate h_{t} for $t \geq T$.
Next, considering the walk \mathcal{W}_{v}, starting at v, let $r_{t}=\operatorname{Pr}\left(\mathcal{W}_{v}(t)=v\right)$ be the probability that this walk returns to v at step $t=0,1, \ldots$ Let

$$
R(z)=\sum_{t=0}^{\infty} r_{t} z^{t}
$$

generate r_{t}. Our definition of return includes the term $r_{0}=1$.
For $t \geq T$ let $f_{t}=f_{t}(u \rightarrow v)$ be the probability that the first visit of the walk \mathcal{W}_{u} to v in the period $[T, T+1, \ldots]$ occurs at step t. Let

$$
F(z)=\sum_{t=T}^{\infty} f_{t} z^{t}
$$

generate f_{t}. Then we have

$$
\begin{equation*}
H(z)=F(z) R(z) \tag{39}
\end{equation*}
$$

First visit time lemma

For $R(z)$ let

$$
\begin{equation*}
R_{T}(z)=\sum_{j=0}^{T-1} r_{j} z^{j} \tag{40}
\end{equation*}
$$

Let

$$
\begin{equation*}
\lambda=\frac{1}{K T} \tag{41}
\end{equation*}
$$

for some sufficiently large constant K.
Lemma 10. Suppose that
(a) For some constant $\psi>0$, we have

$$
\min _{|z| \leq 1+\lambda}\left|R_{T}(z)\right| \geq \psi
$$

(b) $T \pi_{v}=o(1)$ and $T \pi_{v}=\Omega\left(n^{-2}\right)$.

There exists

$$
\begin{equation*}
p_{v}=\frac{\pi_{v}}{R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)}, \tag{42}
\end{equation*}
$$

where $R_{T}(1)$ is from (40), such that for all $t \geq T$,

$$
\begin{equation*}
f_{t}(u \rightarrow v)=\left(1+O\left(T \pi_{v}\right)\right) \frac{p_{v}}{\left(1+p_{v}\right)^{t+1}}+O\left(T \pi_{v} e^{-\lambda t / 2}\right) \tag{43}
\end{equation*}
$$

Proof Write

$$
\begin{equation*}
R(z)=R_{T}(z)+\widehat{R}_{T}(z)+\frac{\pi_{v} z^{T}}{1-z} \tag{44}
\end{equation*}
$$

where $R_{T}(z)$ is given by (40) and

$$
\widehat{R}_{T}(z)=\sum_{t \geq T}\left(r_{t}-\pi_{v}\right) z^{t}
$$

generates the error in using the stationary distribution π_{v} for r_{t} when $t \geq T$. Similarly,

$$
\begin{equation*}
H(z)=\widehat{H}_{T}(z)+\frac{\pi_{v} z^{T}}{1-z} \tag{45}
\end{equation*}
$$

Equation (37) implies that the radii of convergence of both \widehat{R}_{T} and \widehat{H}_{T} exceed $1+2 \lambda$. Moreover, for $Z=H, R$ and $|z| \leq 1+\lambda$,

$$
\begin{equation*}
|\widehat{Z}(z)|=o\left(n^{-2}\right) \tag{46}
\end{equation*}
$$

Using (44), (45) we rewrite $F(z)=H(z) / R(z)$ from (39) as $F(z)=B(z) / A(z)$ where

$$
\begin{align*}
& A(z)=\pi_{v} z^{T}+(1-z)\left(R_{T}(z)+\widehat{R}_{T}(z)\right) \tag{47}\\
& B(z)=\pi_{v} z^{T}+(1-z) \widehat{H}_{T}(z) \tag{48}
\end{align*}
$$

For real $z \geq 1$ and $Z=H, R$, we have

$$
Z_{T}(1) \leq Z_{T}(z) \leq Z_{T}(1) z^{T}
$$

Let $z=1+\beta \pi_{v}$, where $\beta=O(1)$. Since $T \pi_{v}=o(1)$ we have

$$
Z_{T}(z)=Z_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)
$$

$T \pi_{v}=o(1)$ and $T \pi_{v}=\Omega\left(n^{-2}\right)$ and $R_{T}(1) \geq 1$ implies that

$$
A(z)=\pi_{v}\left(1-\beta R_{T}(1)+O\left(T \pi_{v}\right)\right)
$$

It follows that $A(z)$ has a real zero at z_{0}, where

$$
\begin{equation*}
z_{0}=1+\frac{\pi_{v}}{R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)}=1+p_{v} \tag{49}
\end{equation*}
$$

say. We also see that

$$
\begin{equation*}
A^{\prime}\left(z_{0}\right)=-R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right) \neq 0 \tag{50}
\end{equation*}
$$

and thus z_{0} is a simple zero (see e.g. [4] p193). The value of $B(z)$ at z_{0} is

$$
\begin{equation*}
B\left(z_{0}\right)=\pi_{v}\left(1+O\left(T \pi_{v}\right)\right) \neq 0 \tag{51}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{B\left(z_{0}\right)}{A^{\prime}\left(z_{0}\right)}=-\left(1+O\left(T \pi_{v}\right)\right) p_{v} \tag{52}
\end{equation*}
$$

Thus (see e.g. [4] p195) the principal part of the Laurent expansion of $F(z)$ at z_{0} is

$$
\begin{equation*}
f(z)=\frac{B\left(z_{0}\right) / A^{\prime}\left(z_{0}\right)}{z-z_{0}} \tag{53}
\end{equation*}
$$

To approximate the coefficients of the generating function $F(z)$, we now use a standard technique for the asymptotic expansion of power series (see e.g.[12] Th 5.2.1).

We prove below that $F(z)=f(z)+g(z)$, where $g(z)$ is analytic in $C_{\lambda}=\{|z| \leq 1+\lambda\}$ and that $M=\max _{z \in C_{\lambda}}|g(z)|=O\left(T \pi_{v}\right)$.

Let $a_{t}=\left[z^{t}\right] g(z)$, then (see e.g.[4] p143), $a_{t}=g^{(t)}(0) / t$!. By the Cauchy Inequality (see e.g. [4] p130) we see that $\left|g^{(t)}(0)\right| \leq M t!/(1+\lambda)^{t}$ and thus

$$
\left|a_{t}\right| \leq \frac{M}{(1+\lambda)^{t}}=O\left(T \pi_{v} e^{-t \lambda / 2}\right)
$$

As $\left[z^{t}\right] F(z)=\left[z^{t}\right] f(z)+\left[z^{t}\right] g(z)$ and $\left[z^{t}\right] 1 /\left(z-z_{0}\right)=-1 / z_{0}^{t+1}$ we have

$$
\begin{equation*}
\left[z^{t}\right] F(z)=\frac{-B\left(z_{0}\right) / A^{\prime}\left(z_{0}\right)}{z_{0}^{t+1}}+O\left(T \pi_{v} e^{-t \lambda / 2}\right) \tag{54}
\end{equation*}
$$

Thus, we obtain

$$
\left[z^{t}\right] F(z)=\left(1+O\left(T \pi_{v}\right)\right) \frac{p_{v}}{\left(1+p_{v}\right)^{t+1}}+O\left(T \pi_{v} e^{-t \lambda / 2}\right)
$$

which completes the proof of (43).
Now $M=\max _{z \in C_{\lambda}}|g(z)| \leq \max |f(z)|+\max |F(z)|=O\left(T \pi_{v}\right)+\max |F(z)|$, where $F(z)=$ $B(z) / A(z)$. On C_{λ} we have, using (46)-(48),

$$
|F(z)| \leq \frac{O\left(\pi_{v}\right)}{\lambda\left|R_{T}(z)\right|-O\left(T \pi_{v}\right)}=O\left(T \pi_{v}\right)
$$

We now prove that z_{0} is the only zero of $A(z)$ inside the circle C_{λ} and this implies that $F(z)-f(z)$ is analytic inside C_{λ}. We use Rouché's Theorem (see e.g. [4]), the statement of which is as follows: Let two functions $\phi(z)$ and $\gamma(z)$ be analytic inside and on a simple closed contour C. Suppose that $|\phi(z)|>|\gamma(z)|$ at each point of C, then $\phi(z)$ and $\phi(z)+\gamma(z)$ have the same number of zeroes, counting multiplicities, inside C.

Let the functions $\phi(z), \gamma(z)$ be given by $\phi(z)=(1-z) R_{T}(z)$ and $\gamma(z)=\pi_{v} z^{T}+(1-z) \widehat{R}_{T}(z)$.

$$
|\gamma(z)| /|\phi(z)| \leq \frac{\pi_{v}(1+\lambda)^{T}}{\lambda \psi}+\frac{\left|\widehat{R}_{T}(z)\right|}{\psi}=o(1)
$$

As $\phi(z)+\gamma(z)=A(z)$ we conclude that $A(z)$ has only one zero inside the circle C_{λ}. This is the simple zero at z_{0}.

Corollary 11. For $t \geq T$ let $\boldsymbol{A}_{t}(v)$ be the event that \mathcal{W}_{u} does not visit v in steps $T, T+1, \ldots, t$. Then, under the assumptions of Lemma 10,

$$
\operatorname{Pr}\left(\boldsymbol{A}_{t}(v)\right)=\frac{\left(1+O\left(T \pi_{v}\right)\right)}{\left(1+p_{v}\right)^{t}}+O\left(T^{2} \pi_{v} e^{-\lambda t / 2}\right)
$$

Proof We use Lemma 10 and

$$
\operatorname{Pr}\left(\boldsymbol{A}_{t}(v)\right)=\sum_{\tau>t} f_{\tau}(u \rightarrow v) .
$$

6.2 Proof of conductance bound in Lemma 7

By the conductance of a configuration C, we mean the conductance of a random walk on the underlying multi-graph $M(C)$. It is however, the configurations we sample uar in the proof of Lemma 12.

Lemma 12. Let $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of natural numbers, satisfying $\min d_{i} \geq 3$ and $\theta \leq n^{1 / 4}$. With probability $1-o\left(n^{-1 / 9}\right)$ the conductance Φ of a uar sampled configuration $C(\boldsymbol{d})$ satisfies $\Phi \geq 0.01$.

Proof Let $F(a)=a!/\left((a / 2)!2^{(a / 2)}\right)$. With this notation,

$$
\begin{equation*}
\frac{F(b) F(a-b)}{F(a)}=\frac{\binom{a / 2}{b / 2}}{\binom{a}{b}}=O(1)\left(\frac{b}{a}\right)^{b / 2}\left(1-\frac{b}{a}\right)^{(a-b) / 2} \tag{55}
\end{equation*}
$$

For any $S \subseteq V$ let $d(S)$ denote the sum of the degrees of the vertices of S. A set S is small if $d(S) \leq(\theta n)^{1 / 4}$. A set is large if $(\theta n)^{1 / 4} \leq d(S) \leq \theta n / 2$. Let $8 / 9<\beta<1$ be a positive constant.

SMALL SETS $\left(\delta|S| \leq d(S) \leq(\theta n)^{1 / 4}\right)$.
Let $N(s, \beta)$ be the expected number of small sets S of size s with at least $\beta d(S)$ induced edges.

$$
\begin{equation*}
N(s, \beta)=\sum_{S}\binom{d(S)}{\beta d(S)} \frac{F(\beta d(S)) F(\theta n-\beta d(S))}{F(\theta n)} . \tag{56}
\end{equation*}
$$

Noting that $\binom{L}{k} \leq(L e / k)^{k}$ and using (55) with $\delta s \leq d(S) \leq(\theta n)^{1 / 4}$ and $\delta \geq 3$ we find

$$
\begin{aligned}
N(s, \beta) & \leq O(1) \sum_{S}\left(\frac{d(S) e}{\beta d(S)}\right)^{\beta d(S)}\left(\frac{\beta d(S)}{\theta n}\right)^{\beta d(S) / 2}\left(1-\frac{\beta d(S)}{\theta n}\right)^{(\theta n-\beta d(S)) / 2} \\
& \leq O(1) \sum_{S}\left(\frac{e}{\beta}\right)^{\beta d(S)}\left(\frac{\beta d(S)}{\theta n}\right)^{\beta d(S) / 2} \\
& \leq O(1)\left(\frac{n e}{s}\left(\frac{e^{2}}{\beta(\theta n)^{3 / 4}}\right)^{3 \beta / 2}\right)^{s} \\
& =O\left(\left(e^{4} n^{-(9 \beta / 8-1)}\right)^{s}\right) .
\end{aligned}
$$

Thus

$$
\sum_{\substack{|S|=s \\ s \text { Small }}} N(s, \beta)=O\left(n^{-(9 \beta / 8-1)}\right)
$$

LARGE SETS $\left((\theta n)^{1 / 4} \leq d(S) \leq \theta n / 2\right)$.
Let $N(s, \beta)$ be the expected number of large sets S of size s inducing at least $\beta d(S)$ edges. As before, $N(s, \beta)$ is given by (56). Let $d(S)=\alpha \theta n$ where $0<\alpha \leq 1 / 2$. Let $\varepsilon=1-\beta$. We note the following approximation:

$$
\binom{d(s)}{\beta d(S)}=\binom{\alpha \theta n}{\beta \alpha \theta n}=\frac{O(1)}{\sqrt{\varepsilon \beta \alpha \theta n}} \frac{1}{\beta^{\beta \alpha \theta n} \varepsilon^{\varepsilon \alpha \theta n}} .
$$

Thus

$$
\begin{equation*}
N(s, \beta) \leq \sum_{S} \frac{O(1)}{\sqrt{\varepsilon \beta \alpha \theta n}}\left(\frac{(\alpha \beta)^{\alpha \beta}(1-\alpha \beta)^{1-\alpha \beta}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2 \alpha}}\right)^{\frac{\theta n}{2}}=\sum_{S} f(S) \tag{57}
\end{equation*}
$$

Let $s=c n$. We henceforth assume that we choose the value $\alpha=\alpha^{*}$ which maximizes $f(S)$ for $|S|=c n$. With this convention we can write

$$
\begin{equation*}
N(c n, \beta) \leq \frac{O(1)}{\sqrt{\varepsilon \beta c(1-c) \alpha \theta n^{2}}}\left(\left(\frac{(\alpha \beta)^{\alpha \beta}(1-\alpha \beta)^{1-\alpha \beta}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2 \alpha}}\right)^{\frac{\theta}{2}} \frac{1}{c^{c}(1-c)^{1-c}}\right)^{n} \tag{58}
\end{equation*}
$$

We split the proof for large sets into two parts: Those sets for which $\alpha \leq 1 / \theta$ and those for which $1 / \theta \leq \alpha \leq 1 / 2$.

Case of $\alpha \leq 1 / \theta$.
We need to remove the dependence on c in the right hand side of the expression (58) for $N(c n, \beta)$. We first deal with the square root term. Since $\frac{1}{n} \leq c \leq \frac{(n-1)}{n}$, we have that $c(1-c) \geq \frac{n-1}{n^{2}}$ and so

$$
c(1-c) \alpha \theta n^{2} \geq \frac{n-1}{n^{2}}(\theta n)^{1 / 4} n \geq(\theta n)^{1 / 4} / 2
$$

Therefore, as β, ε are positive constants,

$$
\frac{1}{\sqrt{\varepsilon \beta c(1-c) \alpha \theta n^{2}}}=\frac{O(1)}{(\theta n)^{1 / 8}} .
$$

We next consider the main term of (58). For $0 \leq x \leq 1 / 2$, the function

$$
g(x)=x^{x}(1-x)^{1-x}
$$

satisfies, $g(0)=1$ and is monotonically decreasing with minimum $g(1 / 2)=1 / 2$.
Since $d(S) \geq 3 s$, and $s=c n$, from $d(S)=\alpha \theta n$ we deduce that $c \leq \alpha \theta / 3$. As $\alpha \leq 1 / \theta$ then $c \leq \alpha \theta / 3 \leq 1 / 3$. Therefore $g(c) \geq g(\alpha \theta / 3)$, and we can replace c by $\alpha \theta / 3$ in (58). Hence

$$
\begin{aligned}
N(c n, \beta) & =\frac{O(1)}{(\theta n)^{1 / 8}}\left(\frac{(\alpha \beta)^{\alpha \beta \theta / 2}(1-\alpha \beta)^{1-\alpha \beta \theta / 2}}{(\alpha \theta / 3)^{\alpha \theta / 3}(1-\alpha \theta / 3)^{1-\alpha \theta / 3}} \frac{(1-\alpha \beta)^{\theta / 2-1}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha \theta}}\right)^{n} \\
& =\frac{O(1)}{(\theta n)^{1 / 8}}(\phi(\alpha, \beta, \theta))^{n} .
\end{aligned}
$$

We next maximize $\phi(\alpha, \beta, \theta)$. Let $h(x, y)=(y x)^{x}(1-y x)^{1-x}$ for $0<x, y \leq 1$. Considering $h(x, y)$ as a function of y, there is a unique maximum at $y=1$, given by

$$
\begin{aligned}
\frac{\partial}{\partial y} \log (h(x, y)) & =x\left(\frac{1}{y}-\frac{1-x}{1-y x}\right)=0 \\
\frac{\partial^{2}}{\partial y^{2}} \log (h(x, y)) & =-x\left(\frac{1}{y^{2}}+\frac{x(1-x)}{(1-y x)^{2}}\right)<0
\end{aligned}
$$

Therefore $h(x, y)<h(x, 1)=g(x)$. So $h(\alpha \beta \theta / 2,2 / \theta)<g(\alpha \beta \theta / 2)<g(\alpha \theta / 3)$. Hence

$$
\phi(\alpha, \beta, \theta) \leq \frac{(1-\alpha \beta)^{\theta / 2-1}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha \theta}} .
$$

We prove below, that

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left\{\frac{(1-\alpha \beta)^{\theta / 2-1}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha \theta}}\right\}<0 \tag{59}
\end{equation*}
$$

Since $\theta \geq \delta \geq 3$, we have that

$$
\frac{(1-\alpha \beta)^{\theta / 2-1}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha \theta}} \leq \frac{e^{-\alpha \beta / 2}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{3 \alpha}} \leq \lambda^{\alpha},
$$

where $\lambda<0.7$, provided $\beta \geq 0.99$.
Now since $\alpha \theta n \geq(\theta n)^{1 / 4}$ for large sets, and $\theta \leq n^{1 / 4}$ by conditions of the lemma, we have that $\alpha n \geq n^{1 / 16}$. Thus

$$
\begin{aligned}
N(c n, \beta) & =\frac{O(1)}{(\theta n)^{1 / 8}}(\phi(\alpha, \beta, \theta))^{n} \\
& =O\left(\lambda^{n^{1 / 16}}\right) .
\end{aligned}
$$

As $s=c n$ can take at most n values we have that $\sum N(c n, \beta)=O\left(n \lambda^{n^{1 / 16}}\right)$.
Proof of (59).

$$
\frac{\partial}{\partial \theta}\left\{\frac{(1-\alpha \beta)^{\theta / 2-1}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha \theta}}\right\}=\frac{1}{1-\alpha \beta}\left(\frac{(1-\alpha \beta)^{\frac{1}{2}}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha}}\right)^{\theta} \log \left(\frac{(1-\alpha \beta)^{\frac{1}{2}}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{\alpha}}\right)
$$

Let

$$
f(\alpha, \beta)=\frac{(1-\alpha \beta)}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2 \alpha}}
$$

When $\alpha=0, f(\alpha, \beta)=1$. We prove that, for $\beta \geq 0.99, f(\alpha, \beta)<1$ for $\alpha>0$, which will establish the result. Note that

$$
\begin{equation*}
\frac{\partial}{\partial \alpha} f(\alpha, \beta)=\frac{-1}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2 \alpha}}\left(\beta+(1-\alpha \beta) \log \left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2}\right) \tag{60}
\end{equation*}
$$

Consider

$$
\begin{aligned}
\frac{d}{d \beta}\left\{\log \left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2}+\beta\right\} & \equiv \frac{d}{d \beta}\left\{\log \left((1-\beta)^{1-\beta} \beta^{\beta}\right)^{2}+\beta\right\} \\
& =2 \log \left(\frac{\beta}{1-\beta}\right)+1
\end{aligned}
$$

For $\beta>\frac{1}{2}$, the last line above is positive, and thus $\log \left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2}>-\beta$. It follows that (60) is negative, as required.

Case of $1 / \theta \leq \alpha \leq 1 / 2$.
Continuing to evaluate $N(s, \beta)$ as before, and referring to $f(S)$ as given by the right hand side term of (57), let

$$
A(\alpha)=\frac{(\alpha \beta)^{\alpha \beta}(1-\alpha \beta)^{1-\alpha \beta}}{\left(\varepsilon^{\varepsilon} \beta^{\beta}\right)^{2 \alpha}}
$$

Thus

$$
\begin{aligned}
\log (A(\alpha)) & =(\alpha \beta) \log ((\alpha \beta))+(1-\alpha \beta) \log (1-\alpha \beta)-2 \alpha \log \left(\varepsilon^{\varepsilon} \beta^{\beta}\right) \\
\frac{\partial}{\partial \alpha} \log (A(\alpha)) & =\beta \log (\alpha \beta)-\beta \log (1-\alpha \beta)-2 \log \left(\varepsilon^{\varepsilon} \beta^{\beta}\right)
\end{aligned}
$$

Setting $\frac{\partial}{\partial \alpha} \log (A(\alpha))=0$ gives

$$
\alpha=\frac{\varepsilon^{2 \varepsilon / \beta} \beta}{1+\varepsilon^{2 \varepsilon / \beta} \beta^{2}} .
$$

Let α_{0} be the solution to this when $\beta=0.99$. Thus $\alpha_{0} \approx 0.477$. Also,

$$
\frac{\partial^{2}}{\partial \alpha^{2}} \log (A(\alpha))=\beta\left(\frac{1}{\alpha}+\frac{\beta}{1-\alpha \beta}\right)>0
$$

hence the stationary point α_{0} is a minima. As $\theta \geq 3$ and by inspection, $A(0.5)<A(1 / 3)$ then $A\left(\alpha_{0}\right) \leq A(1 / \theta)$. We can use $\alpha^{*}=1 / \theta$ as the value of α maximizing $A(\alpha)$ in the range $1 / \theta \leq \alpha \leq 1 / 2$. It follows that

$$
\begin{aligned}
\sum_{\substack{\text { SLarge } \\
\alpha \geq 1 / \theta}} f(S) & =\left(\frac{1}{\sqrt{\theta n}}\right) 2^{n}(A(1 / \theta))^{\frac{\theta n}{2}} \\
& =O(1) 2^{n}\left(\frac{(\beta / \theta)^{\frac{\beta}{2}}(1-\beta / \theta)^{\frac{1}{2}(\theta-\beta)}}{\varepsilon^{\varepsilon} \beta^{\beta}}\right)^{n}
\end{aligned}
$$

Let

$$
T(\theta)=\left(\frac{\beta}{\theta}\right)^{\beta}\left(1-\frac{\beta}{\theta}\right)^{\theta-\beta}
$$

then

$$
\frac{\partial}{\partial \theta} \log (T(\theta))=\log \left(\frac{\theta-\beta}{\theta}\right)
$$

Thus $T(\theta)$ is monotone decreasing in θ, and so $T(\theta) \leq T(3)$. Finally

$$
\begin{aligned}
\sum N(s, \beta) & \leq O(n) 2^{n}\left(\frac{(\beta / 3)^{\frac{\beta}{2}}(1-\beta / 3)^{\frac{1}{2}(3-\beta)}}{\varepsilon^{\varepsilon} \beta^{\beta}}\right)^{n} \\
& =O\left(n(0.8)^{n}\right)
\end{aligned}
$$

This completes the proof of the lemma.

6.3 Proof of Lemma 8

For convenience, we restate the lemma.
Lemma 13. Let \mathcal{W}_{v}^{*} denote the walk on G_{v} starting at v with Γ_{v}° made into an absorbing state. Let $R_{v}^{*}=\sum_{t=0}^{\infty} r_{t}^{*}$ where r_{t}^{*} is the probability that \mathcal{W}_{v}^{*} is at vertex v at time t. There exists a constant $\zeta \in(0,1)$ such that

$$
R_{v}=R_{v}^{*}+O\left(\zeta^{\omega}\right)
$$

Proof We bound $\left|R_{v}-R_{v}^{*}\right|$ by using

$$
\begin{equation*}
R_{v}-R_{v}^{*}=\sum_{t=0}^{\omega}\left(r_{t}-r_{t}^{*}\right)+\sum_{t=\omega+1}^{T}\left(r_{t}-r_{t}^{*}\right)-\sum_{t=T+1}^{\infty} r_{t}^{*} . \tag{61}
\end{equation*}
$$

Case $t \leq \omega$. When a particle starting from v is absorbed at Γ_{v}°, this is at at distance ω from v. Thus for $t<\omega, r_{t}^{*}=r_{t}$, and

$$
\begin{equation*}
\sum_{t=0}^{\omega}\left(r_{t}-r_{t}^{*}\right)=0 \tag{62}
\end{equation*}
$$

Case $\omega+1 \leq t \leq T$. Using (20) with $x=u=v$ and $\zeta=\left(1-\Phi^{2} / 2\right)<1$, we have for $t \geq \omega$, that $r_{t}=\pi_{v}+O\left(\zeta^{t}\right)$. Since $\Delta=O\left(n^{a}\right), a<1$, we have $T \pi_{v}=o\left(\zeta^{\omega}\right)$ and so

$$
\begin{equation*}
\sum_{t=\omega+1}^{T}\left|r_{t}-r_{t}^{*}\right|=\sum_{t=\omega+1}^{T} r_{t} \leq \sum_{t=\omega+1}^{T}\left(\pi_{v}+\zeta^{t}\right)=O\left(\zeta^{\omega}\right) \tag{63}
\end{equation*}
$$

Case $t \geq T+1$. It remains to estimate $\sum_{t=T+1}^{\infty} r_{t}^{*}$. We upper bound r_{t}^{*} by a probability σ_{t} as follows. Assume first that G_{v} is a tree. Consider an unbiased random walk $X_{0}^{(b)}, X_{1}^{(b)}, \ldots$ starting at $|b|<a \leq \omega$ on the infinite line $(\ldots,-a, \ldots,-1,0,1, \ldots, a, \ldots) . X_{m}^{(b)}$ is the sum of m independent ± 1 random variables. The central limit theorem implies that there exists a constant $c>0$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\left|X_{c a^{2}}^{(0)}\right|<a\right) \leq e^{-1 / 2} \tag{64}
\end{equation*}
$$

Now for any t and b with $|b|<a$, we have

$$
\begin{equation*}
\operatorname{Pr}\left(\left|X_{\tau}^{(b)}\right|<a, \tau=0, \ldots, t\right) \leq \operatorname{Pr}\left(\left|X_{\tau}^{(0)}\right|<a, \tau=0, \ldots, t\right) \tag{65}
\end{equation*}
$$

which is justified with the following game: We have two walks, A and B coupled to each other, with A starting at position 0 and B at position b, which, w.l.o.g, we shall assume is positive. The walk is a simple random walk which comes to a halt when either of the walks hits an absorbing state (that being, $-a$ or a). Since they are coupled, B will win iff they drift $(a-b)$ to the right from 0 and A will win iff they drift $-a$ to the left from 0 . Given the symmetry of the walk, B has a higher chance of winning.

For $t>T$, we define σ_{t} by

$$
\begin{equation*}
\sigma_{t}=\operatorname{Pr}\left(\left|X_{\tau}^{(0)}\right|<a, \tau=0,1, \ldots, t\right) \leq\left(e^{-1 / 2}\right)^{\left\lfloor t /\left(c a^{2}\right)\right\rfloor} \tag{66}
\end{equation*}
$$

The paths from v to Γ_{v}° in the tree satisfy $a \leq \omega$, and so

$$
\sum_{t=T+1}^{\infty} \sigma_{t} \leq \sum_{t=T+1}^{\infty} e^{-t /\left(3 c \omega^{2}\right)} \leq \frac{e^{-T /\left(3 c \omega^{2}\right)}}{1-e^{-1 /\left(3 c \omega^{2}\right)}}=O\left(\omega^{2} e^{-\Theta\left(\frac{\log n}{\omega^{2}}\right)}\right)=O\left(\zeta^{\omega}\right)
$$

We now turn to the case where G_{v} contains a unique light cycle C. Let x be the furthest vertex of C from v in G_{v}. This is the only possible place where the random walk is more likely to get closer to v at the next step. We can see this by considering the breadth first construction of G_{v}. Thus we can compare our walk with random walk on $[-a, a]$ where there is a unique value $x<a$ such that only at $\pm x$ is the walk more likely to move towards the origin and even then this probability is at most $2 / 3$. Using results (64), (65) for the unbiased walk on the line, we have

$$
\operatorname{Pr}\left(\exists \tau \leq c a^{2}:\left|X_{\tau}^{(b)}\right| \geq x\right) \geq 1-e^{-1 / 2}
$$

The probability the particle walks from x to a without returning to the cycle is at least $1 / 3(a-x)$. Thus

$$
\operatorname{Pr}\left(\exists \tau \leq c a^{2}:\left|X_{\tau+a-x}^{(b)}\right| \geq a\right) \geq\left(1-e^{-1 / 2}\right) / 3 a \geq \frac{13}{100 a}
$$

and so

$$
\begin{equation*}
\sigma_{t}=\operatorname{Pr}\left(\left|X_{\tau}^{(0)}\right|<a, \tau=0,1, \ldots, t\right) \leq(1-13 /(100 a))^{\left\lfloor t /\left(2 c a^{2}\right)\right\rfloor} \leq e^{-t /\left(20 c a^{3}\right)} \tag{67}
\end{equation*}
$$

As $a \leq \omega$,

$$
\sum_{t=T+1}^{\infty} \sigma_{t} \leq \sum_{t=T+1}^{\infty} e^{-t /\left(20 c \omega^{3}\right)} \leq \frac{e^{-T /\left(20 c \omega^{3}\right)}}{1-e^{-1 /\left(20 c \omega^{3}\right)}}=O\left(\omega^{3} e^{-O\left(\frac{\log n}{\omega^{3}}\right)}\right)=O\left(\zeta^{\omega}\right)
$$

6.4 Condition (a) of Lemma 2

Lemma 14. For $|z| \leq 1+\lambda$, there exists a constant $\psi>0$ such that $\left|R_{T}(z)\right| \geq \psi$.

Proof As in Lemma 8, we consider the walk \mathcal{W}_{v}^{*} on G_{v}, starting from v, and with absorption at Γ_{v}°. For this walk, let β_{t} be the probability of a first return to v at step t, and let r_{t}^{*} be the probability of a return to v at step t.

Let $\beta(z)=\sum_{t=1}^{T} \beta_{t} z^{t}$, let $\alpha(z)=1 /(1-\beta(z))$, and write $\alpha(z)=\sum_{t=0}^{\infty} \alpha_{t} z^{t}$. Thus α_{t} is the probability of a return to v at time t for a walk $\mathcal{W}_{v}^{\dagger}$, all of whose excursions from v are length at most T. Observe that $\alpha_{t} \leq r_{t}^{*} \leq r_{t}$. We shall prove below that the radius of convergence of $\alpha(z)$ is at least $1+\Omega\left(1 / \omega^{3}\right)$.

We can write

$$
\begin{align*}
R_{T}(z) & =\alpha(z)+Q(z) \\
& =\frac{1}{1-\beta(z)}+Q(z) \tag{68}
\end{align*}
$$

where $Q(z)=Q_{1}(z)+Q_{2}(z)$, and

$$
\begin{aligned}
& Q_{1}(z)=\sum_{t=0}^{T}\left(r_{t}-\alpha_{t}\right) z^{t} \\
& Q_{2}(z)=-\sum_{t=T+1}^{\infty} \alpha_{t} z^{t}
\end{aligned}
$$

We note that $Q(0)=0, \alpha(0)=1$ and $\beta(0)=0$.
We will show below that

$$
\begin{equation*}
\left|Q_{2}(z)\right|=o(1) \tag{69}
\end{equation*}
$$

for $|z| \leq 1+2 \lambda$ and thus the radius of convergence of $Q_{2}(z)$ (and hence $\left.\alpha(z)\right)$ is greater than $1+\lambda$. This will imply that $|\beta(z)|<1$ for $|z| \leq 1+\lambda$, so that the expression (68) is well defined. For suppose there exists z_{0} such that $\left|\beta\left(z_{0}\right)\right| \geq 1$. Then $\beta\left(\left|z_{0}\right|\right) \geq\left|\beta\left(z_{0}\right)\right| \geq 1$ and we can assume (by scaling) that $\beta\left(\left|z_{0}\right|\right)=1$. We have $\beta(0)<1$ and so we can assume that $\beta(|z|)<1$ for $0 \leq|z|<\left|z_{0}\right|$. But as ρ approaches 1 from below, (68) is valid for $z=\rho\left|z_{0}\right|$ and then $\left|R_{T}\left(\rho\left|z_{0}\right|\right)\right| \rightarrow \infty$, contradiction.

Recall that $\lambda=1 / K T$. Clearly $\beta(1) \leq 1$ and so for $|z| \leq 1+\lambda$

$$
\beta(|z|) \leq \beta(1+\lambda) \leq \beta(1)(1+\lambda)^{T} \leq e^{1 / K}
$$

Using $|1 /(1-\beta(z))| \geq 1 /(1+\beta(|z|))$ we obtain

$$
\begin{equation*}
\left|R_{T}(z)\right| \geq \frac{1}{1+\beta(|z|)}-|Q(z)| \geq \frac{1}{1+e^{1 / K}}-|Q(z)| \tag{70}
\end{equation*}
$$

We now prove that $|Q(z)|=o(1)$ for $|z| \leq 1+\lambda$ and the lemma will follow.
Turning our attention first to $Q_{1}(z)$, we have

$$
\begin{equation*}
\left|Q_{1}(z)\right| \leq(1+\lambda)^{T}\left|Q_{1}(1)\right| \leq e^{2 / K} \sum_{t=0}^{T}\left|r_{t}-\alpha_{t}\right| \tag{71}
\end{equation*}
$$

From (62), (63) of the proof of Lemma 8, we see that $\sum_{t=0}^{T}\left|r_{t}-\alpha_{t}\right|=o(1)$, hence $\left|Q_{1}(z)\right|=$ $o(1)$.

We now consider $Q_{2}(z)$. As in Lemma 8 , let r_{t}^{*} be the probability that a walk \mathcal{W}_{v}^{*} on G_{v} starting at v has not been absorbed at Γ_{v}^{0} by step t. Then $\alpha_{t} \leq r_{t}^{*} \leq \sigma_{t}$, so

$$
\left|Q_{2}(z)\right| \leq \sum_{t=T+1}^{\infty} \sigma_{t}|z|^{t}
$$

In the case where G_{v} is a tree we can use (66) to prove that the radius of convergence of $Q_{2}(z)$ is at least $e^{1 /\left(3 c \omega^{2}\right)}>1+1 /\left(3 c \omega^{2}\right)>1+2 \lambda$, where $\omega=\log \log \log n$ is given in (10), and $\lambda=O(1 / \log n)$. So for $|z| \leq 1+\lambda$,

$$
\left|Q_{2}(z)\right| \leq \sum_{t=T+1}^{\infty} e^{\lambda t-t /\left(3 c \omega^{2}\right)}=o(1)
$$

In the case that G_{v} contains a unique cycle, we can use (67) to see that the radius of convergence of $Q_{2}(z)$ is at least $e^{\frac{1}{20 c \omega^{3}}}>1+2 \lambda$. So for $|z| \leq 1+\lambda$,

$$
\left|Q_{2}(z)\right| \leq \sum_{t=T+1}^{\infty} e^{\lambda t-t /\left(20 c \omega^{3}\right)}=o(1)
$$

[^0]: *Department of Computer Science, King's College, University of London, London WC2R 2LS, UK
 ${ }^{\dagger}$ Department of Computer Science, King's College, University of London, London WC2R 2LS, UK
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, USA, Research supported in part by NSF Grant ccf0502793

