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Abstract. Suppose in a graph G vertices can be either red or blue. Let k
be odd. At each time step, each vertex v in G polls k random neighbours
and takes the majority colour. If it doesn’t have k neighbours, it simply
polls all of them, or all less one if the degree of v is even. We study this
protocol on the preferential attachment model of Albert and Barabási
[3], which gives rise to a degree distribution that has roughly power-law
P (x) ∼ 1

x3 , as well as generalisations which give exponents larger than 3.
The setting is as follows: Initially each vertex of G is red independently
with probability α < 1

2
, and is otherwise blue. We show that if α is

sufficiently biased away from 1
2
, then with high probability, consensus is

reached on the initial global majority within O(logd logd t) steps. Here
t is the number of vertices and d ≥ 5 is the minimum of k and m (or
m−1 if m is even), m being the number of edges each new vertex adds in
the preferential attachment generative process. Additionally, our analysis
reduces the required bias of α for graphs of a given degree sequence
studied in [1] (which includes, e.g., random regular graphs).

Keywords: Local majority dynamics, preferential attachment, power-
law graphs, voting, consensus

1 Introduction

Let G = (V,E) be a graph where each vertex maintains an opinion, which
we speak of in terms of two colours - red and blue. We make no assumptions
about the properties of the colours/opinions except that vertices can distinguish
between them. We are interested in distributed protocols on G that can bring
about consensus to a single opinion.

One of the simplest and most widely studied distributed consensus algorithms is
the voter model (see, e.g., [4, ch. 14]). In the discrete time setting, at each time
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step τ , each vertex chooses a single neighbour uniformly at random (uar) and
assumes its opinion. The number of different opinions in the system is clearly
non-increasing, and consensus is reached almost surely in finite, non-bipartite,
connected graphs. Using an elegant martingale argument, [13] determined the
probability of consensus to a particular colour. In our context this would be the
sum of the degrees of vertices which started with that colour, as a fraction of
the sum of degrees over all vertices. Thus, on regular graphs, for example, if the
initial proportion of reds is a constant α, the probability of a red consensus is α.
This probability is increased on non-regular graphs if the minority is “privileged”
by sitting on high degree vertices (as in say, for example, the small proportion
of high degree vertices in a graph with power-law distribution). This motivates
an alternative where the majority is certain, or highly likely, to win.

The local majority protocol in a synchronous discrete time setting does the
following: At each time step, each vertex v polls all its neighbours and assumes
the majority colour in the next time step. This can be motivated by both a
prescriptive and a descriptive view. In the former, as a consensus protocol, it
can be seen as a distributed co-ordination mechanism for networked systems. In
the latter, it can be seen as a natural process occurring, for example in social
networks where it may represent the spread of influence.

Let k be odd. Suppose at time step τ = 0 each vertex of a graph G = (V,E)
is either red or blue. In this paper we study the following generalisation of the
local majority protocol (also in a synchronous, discrete time setting):

Definition 1 (k-choice Local Majority Protocol MPk). For each vertex
v ∈ V , for each time step τ = 1, 2, . . . do the following: choose a set of k
neighbours of v uniformly at random. The colour of v at time step τ is the
majority colour of this set at time step τ − 1. If v does not have k neighbours,
then choose a random set of largest possible odd cardinality.

Clearly, we can retrieve the local majority protocol by setting k to be the max-
imum degree, for example.

In addition to which colour dominates, one is also interested in how long it takes
to reach consensus. In the voter model, there is a duality between the voting
process and multiple random walks on the graph. The time it takes for a single
opinion to emerge is the same as the time it takes for n independent random
walks - one starting at each vertex - to coalesce into a single walk, where two
or more random walks coalesce if they are on the same vertex at the same time.
Thus, consensus time can be determined by studying this multiple walk process.
However, the analyses of local-majority-type protocols have not been readily
amenable to the established techniques for the voter model, namely, martingales
and coalescing random walks. Martingales have proved elusive and the random
walks duality does not readily transfer, nor is there an obvious way of altering
the walks appropriately. Thus, ad-hoc techniques and approaches have been
developed.
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We say a sequence of events (Et)t occurs with high probability (whp) if Pr(Et)→
1 as t→∞. In this paper, the underlying parameter t which goes to infinity will
be the number of vertices in the sequence of graphs PAt(m, δ) we consider.

The main result in this paper will be to show that when each vertex of a pref-
erential attachment graph PAt(m, δ) (introduced in the next section) is red in-
dependently with probability α < 1/2, where α is sufficiently biased away from
1/2, then the system will converge to the majority colour with high probability,
and we give an upper bound for the number of steps this takes.

2 Preferential attachment graphs

The preferential attachment models have their origins in the work of Yule [17],
where a growing model is proposed in the context of the evolution of species.
A similar model was proposed by Simon [16] in the statistics of language. The
principle of these models was used by Albert and Barabási [3] to describe a
random graph model where vertices arrive one by one and each of them throws
a number of half-edges to the existing graph. Each half-edge is connected to
a vertex with probability that is proportional to the degree of the latter. This
model was defined rigorously by Bollobás, Riordan, Spencer and Tusnády [6]
(see also [5]). We will describe the most general form of the model which is
essentially due to Dorogovtsev et al. [11] and Drinea et al. [12]. Our description
and notation below follows that from the book of van der Hofstad [14].

The random graph PAt(m, δ) = (V,E) where V = [t] is parameterised by two
constants: m ∈ N, and δ ∈ R, δ > −m. It gives rise to a random graph se-
quence (i.e., a sequence in which each member is a random graph), denoted by
(PAt(m, δ))

∞
t=1. The tth term of the sequence, PAt(m, δ) is a graph with t ver-

tices and mt edges. Further, PAt(m, δ) is a subgraph of PAt+1(m, δ). We define
PAt(1, δ) first, then use it to define the general model PAt(m, δ) (the Barabási-
Albert model corresponds to the case δ = 0).

The random graph PA1(1, δ) consists of a single vertex with one self-loop. We

denote the vertices of PAt(1, δ) by {v(1)1 , v
(1)
2 , . . . , v

(1)
t }. We denote the degree of

vertex v
(1)
i in PAt(1, δ) by Di(t). Then, conditionally on PAt(1, δ), the growth

rule to obtain PAt+1(1, δ) is as follows: We add a single vertex v
(1)
t+1 having

a single edge. The other end of the edge connects to v
(1)
t+1 itself with proba-

bility 1+δ
t(2+δ)+(1+δ) , and connects to a vertex v

(1)
i ∈ PAt(1, δ) with probability

Di(t)+δ
t(2+δ)+(1+δ) – we write v

(1)
t+1 → v

(1)
i . For any t ∈ N, let [t] = {1, . . . , t}. Thus,

Pr
(
v
(1)
t+1 → v

(1)
i | PAt(1, δ)

)
=

{
1+δ

t(2+δ)+(1+δ) for i = t+ 1,
Di(t)+δ

t(2+δ)+(1+δ) for i ∈ [t]
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The model PAt(m, δ),m > 1, with vertices {1, . . . , t} is derived from PAmt(1, δ/m)

with vertices {v(1)1 , v
(1)
2 , . . . , v

(1)
mt} as follows: For each i = 1, 2, . . . , t, we contract

the vertices {v(1)(i−1)+1, v
(1)
(i−1)+2, . . . , v

(1)
(i−1)+t} into one super-vertex, and identify

this super-vertex as i in PAt(m, δ). When a contraction takes place, all loops and
multiple edges are retained. Edges shared between a set of contracted vertices
become loops in the contracted super-vertex. Thus, PAt(m, δ) is a graph on [t].

The above process gives a graph whose degree distribution follows a power law
with exponent 3 + δ/m. This was suggested by the analyses in [11] and [12]. It
was proved rigorously for integral δ by Buckley and Osthus [7]. For a full proof
for real δ see [14]. In particular, when −m < δ < 0, the exponent is between 2
and 3. Experimental evidence has shown that this is the case for several networks
that emerge in applications (cf. [3]). Furthermore, when m ≥ 2, then PAt(m, δ) is
whp connected, but when m = 1 this is not the case, giving rise to a logarithmic
number of components (see [14]).

3 Results and related work

Our main result is the following:

Theorem 1. Let k ≥ 5 be odd and let d = m ∧ k if m is odd and d = (m −
1)∧ k if m is even. Let α∗ be the smallest positive solution for x in the equation
Pr
(
Bin(d− 1, x) ≥ d−1

2

)
= x. If δ ≥ 0 and each vertex in PAt(m, δ) is red

independently with probability α < α∗, then for any constant ε > 0, whp under
MPk every vertex in PAt(m, δ) is blue at all time steps τ ≥ 1+ε

logd( d−1
2 )

logd logd t.

Note that δ = 0 gives the model proposed in the seminal work of Albert and
Barabási [3], giving power law exponent 3, and that δ > 0 gives exponents larger
than 3. We refer the reader to [14] for further details.

Note, for d = 5, 7, 9, 11 we have α∗ = 0.232, 0.347, 0.396, 0.421 to 3 significant
figures (s.f.), respectively. Of course, α∗ → 1

2 as d→∞.

The most closely related work is [1]. Here, the same protocol was studied on ran-
dom graphs of a given degree sequence (which includes random regular graphs)
and Erdős–Rényi random graphs slightly above the connectivity threshold. Sim-
ilar results similar to Theorem 1 were obtained, and in the case of the former
model, an almost matching lower bound was shown. It should be noted that
the thresholds for α obtained in this work apply equally to the models in [1],
and improve the thresholds for α. To contrast, in that paper, the thresholds for
d = 5, 7, 9, 11 were 0.092, 0.182, 0.234, 0.268 to 3 s.f., respectively.

In [15], (full) local majority dynamics on d-regular λ-expanders on n vertices is
studied. In our notation, they show that when α ≤ 1/2− 2λn

d , there is convergence
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to the initial majority, so long as λ
d ≤

3
16 . Since λ ≥ (1− o(1))

√
d for a d-regular

graph, this condition implies d ≥ 29. In contrast, our results apply for d ≥ 5.

In [10] a variant of local majority is studied where a vertex contacts m others
and if d of them have the same colour, the vertex subsequently assumes this
colour. They demonstrate convergence time of O(log n) and error probability –
the probability of converging on the initial minority – decaying exponentially
with n. However, the analysis is done only for the complete graph; our analysis
of sparse graphs is a crucial difference, because the techniques employed for com-
plete graphs do not carry through to sparse graphs, nor are they easily adapted.
The error probability we give is not as strong but still strong, nevertheless. Fur-
thermore, the convergence time we give is much smaller.

In [8] the authors study the following protocol on random regular graphs and
regular expanders: Each vertex picks two neighbours at random, and takes the
majority of these with itself. They show convergence to the initial majority in
O(log n) steps with high probability, subject to sufficiently large initial bias and
high enough vertex degree. However, in their setting, the placement of colours
can be made adversarially.

In summary, our contribution is demonstrating convergence and time of con-
vergence to initial majority for a generalisation of local majority dynamics for
preferential attachment graphs with power-law exponent 3 and above. As far
as we know this is the only such result for power-law graphs (by preferential
attachment or otherwise). Furthermore, we have improved the bias thesholds for
graphs of a given degree sequence studied by the first author in [1], which, to
the best of our knowledge, were already the best or only known results for small
degree graphs in this class (which includes, e.g., random regular graphs).

4 Structural results

Throughout this paper we let γ = γ(m, δ) = 1
2+δ/m . Observe the condition

δ > −m (which must be imposed), implies 0 < γ < 1.

Furthermore, for two non-negative functions f(t), g(t) on N we write f(t) . g(t)
to denote that f(t) = O(g(t)). The underlying asymptotic variable will always
be t, the number of vertices in PAt(m, δ).

Let A be a large constant and let

ω = A log log t.

Let

κ = (log t)7ω

and define as the inner core the vertices [κ], and refer to them as heavy vertices.
We also refer to vertices outside the inner core as light vertices.
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Let
κo = (log t)999ω

and define as the outer core the vertices [κo].

Call a path short if it has length at most ω. Call a cycle short if it has at most
2ω + 1 vertices. Here “cycle” includes a pair of vertices connected by parallel
edges and a vertex with a self-loop.

Below, we repeatedly apply the following, which is proved in [2] (and for the
case k = 1 was given in [14]):

Proposition 1. Suppose i1, j1, i2, j2, . . . , ik, jk are vertices in PAt(m, δ) where
is < js for s = 1, 2, . . . , k. Then

Pr(j1 → i2 ∩ j2 → i2, . . . , jk → ik) ≤Mk 1

iγ1j
1−γ
1

1

iγ2j
1−γ
2

. . .
1

iγkj
1−γ
k

where M = M(m, δ) is a constant that depends only on m and δ.

Below, we also use the fact that 1
iγj1−γ ≤

1

(ij)
1
2

when δ ≥ 0 and i ≤ j. A similar

counting approach was used in [9].

For a vertex v define B(v, r) to be the r ball of v in PAt(m, δ), the subgraph
within distance r.

Lemma 1. With high probability, every vertex v > κ has the following property:
B(v, ω) contains at most one cycle consisting entirely of light vertices.

Proof. Define a cycle-path-cycle (CPC) structure as a pair of cycles connected
by a path. We consider CPC structures where the cycles and paths are short,
that is, cycles have sizes 1 ≤ r, s ≤ 2ω + 1, and the path has length 0 ≤ ` ≤ ω.
Note r = 1 denotes a self-loop and r = 2 denotes a pair of parallel edges between
two vertices.

We denote by a1, . . . , ar and b1, . . . , bs the vertices of the cycles, and c0, . . . , c`
the vertices of the path. Without loss of generality, we may assume a1 = c0 and
b1 = c`. Thus, the structure has r + s+ ` edges and r + s+ `− 1 vertices.

Applying Proposition 1, the expected number of such structures lying entirely
in [t] \ [κ] is bounded by

2ω+1∑
r=1

ω−1∑
`=0

2ω+1∑
s=1

∑
κ<a1,...,ar

∑
κ<b1,...,bs

∑
κ<c1,...,c`−1

Mr+s+`

(a1b1)3/2

r∏
i=2

1

ai

s∏
j=2

1

bj

`−1∏
k=1

1

ck

.

(∫ t

κ

x−3/2 dx

)2 2ω+1∑
r=1

ω−1∑
`=0

2ω+1∑
s=1

(M log t)r+s+`

.
(log t)6ω

κ
= o(1).
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The rest of the proof is of a similar nature and is continued in the appendix. ut

Lemma 2. With high probability, the following hold for all v > κ0:

(i) v has at most 2 edges on short paths into [κ].

(ii) If v is on a short light cycle, then v has no edge that is on a short (light)
path into [κ] but that is not part of the cycle.

(iii) If v is connected to a short light cycle C by a short light path P , then v has
at most one edge e such that e is on a short path into [κ] but e /∈ P .

Proof. (i) Suppose v has three edges e1, e2, e3 (possibly parallel) on short paths
to [κ] to vertices i1, i2, i3 ∈ [κ] (not necessarily distinct). Then there is a minimal
structure S which contains v, e1, e2, e3, i1, i2, i3, and a short path from v to [κ] via
each edge e1, e2, e3. Since S is minimal, there are 0 ≤ r ≤ 3(ω− 1) light vertices
a1, . . . , ar in S which form the short paths from v to [κ] via e1, e2, e3. Also,
since S is minimal, it contains at most 3ω edges. To consider two extremes, for
example, S might be three non-intersecting paths, or a single path with e1, e2, e3
being parallel and all other vertices connected connecting by non-parallel edges.

Observe that each vertex ai has at least two edges, meaning in the application of
Proposition 1 it incurs a fraction 1

ai
or less. Applying Proposition 1, the expected

number of structures S is asymptotically bounded from above by

κ3M3ω
3ω∑
r=0

∑
κ<a1,...,ar

1

v3/2

r∏
i=1

1

ai
.

3ωκ3(M log t)3ω

v3/2
.

Hence, taken over all v > κo, this is O
(

3ωκ3(M log t)3ω

κ
1/2
o

)
= o(1).

The rest of the proof is of a similar nature and is continued in the appendix. ut

We define the truncated r-ball around v, denoted by B̃(v, r), as follows:

1. Delete from B(v, r) all edges incident to vertices in [κ], denote by B−(v, r)
the resulting graph.

2. Let Cv(B−(v, r)) be the connected component in B−(v, r) that contains v.
Add to Cv(B−(v, r)) all edges (u, v) deleted in the previous step such that

u ∈ [κ] and v ∈ Cv(B−(v, r)). The resulting graph is B̃(v, r).

The following is a corollary of the above.

Corollary 1. With high probability, for every vertex v > κo, B̃(v, ω) belongs to
one of the following categories:

(i) B̃(v, ω) is a tree and all vertices are light.

(ii) B̃(v, ω) has no cycles and one or two heavy vertices.
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(iii) In B̃(v, ω), v is part of a short cycle of light vertices, and any heavy vertex

in B̃(v, ω) only connects to v via edges that are part of that cycle.

(iv) In B̃(v, ω), there is a short cycle of light vertices which v is not part of,
which connects to v through a short path P , and there is at most one edge e
on a path from from v to a heavy vertex in B̃(v, ω) such that e is not part of
P .

Degree of outer-core vertices For i ∈ [t] consider the vertex i and the core
[i]. Immediately after the vertex i is added, the graph under construction at that
point, PAi(m, δ), has total degree 2mi, and Di(i) is a random variable taking
integral value between m and 2m. We may ask, given Di(i) = a, what is the
probability that Di(t) = a + d? The question can be framed as one about a
Polya urn process in which the urn initially contains a red balls and 2mi − a
black balls, and the selection process has weighting functions WR(k) = k+δ and
WB(k) = k − (i− 1)δ for red and black balls respectively (see, e.g., [14]).

Notation: Si(t) is the sum of degrees of vertices in [i] in PAt(m, δ). The following
was shown in [2]:

Lemma 3. There is a constant C(m, δ) that depends only on m and δ, such
that for 1 ≤ d ≤ n ≤ m(t− i),

Pr (Di(t) = a+ d | Si(t)− 2mi = n,Di(i) = a) ≤ C(m, δ)
1

d

(
Id

I + n− d

)a+δ
e−

dI
I+n

and

Pr(XR(n, a) = 0) ≤
(

I

I + n

)a+δ
,

where I = I(i,m, δ) = i(2m+ δ)− 1.

Furthermore, the following was also given in [2]:

Lemma 4. Suppose δ ≥ 0 and for a vertex i ∈ [t], i = i(t) → ∞. There exists
a constant K0 > 0 that depends only on m and δ, such that the following holds
for any constant K > K0 and h which is smaller than a constant that depends
only on m, δ,

Pr

(
Si(t) <

1

K
E[Si(t)]

)
≤ e−hi.

We use these lemmas to prove the following:

Lemma 5. With high probability, for every i ∈ [κo], Di(t) ≥
(
t
κo

)γ
1
κ2
o
.
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Proof. Letting h = log κo
κo

in Lemma 4, we see that for some constant K, Sκo(t) ≥
Ktγκ1−γo . Let z = z(t) → ∞ as t → ∞ to be determined later. Letting n =
Ktγκ1−γo − 2mκo and applying 3,

Pr

(
Dκo(t) ≤

n

κoz
| Sκo(t)− 2mκo ≥ n,Dκo(κo) = a

)

≤
n/(κoz)∑
d=0

C(m, δ)
1

d

(
Id

I + n− d

)a+δ
e−

dI
I+n

.

(
I

I + n

)a+δ
+

n/(κoz)∑
d=1

(
I

I + n− d

)a+δ
da+δ−1e−

dI
I+n

≤
(

I

I + n

)a+δ
+

Ia+δ

(I + n− n/(κoz))a+δ

n/(κoz)∑
d=0

da+δ−1.

Since κo →∞ and z →∞ as t→∞, we have n/(κoz) = o(n), so 1
(I+n−n/(κoz))a+δ .

1
(I+n)a+δ

.

Furthermore,

n/(κoz)∑
d=0

da+δ−1 .
∫ n/(κoz)

0

xa+δ−1 dx ≤ 1

a+ δ

(
n

κoz

)a+δ
.

Hence,

Pr

(
Dκo(t) ≤

n

κoz
| Sκo(t)− 2mκo ≥ n,Dκo(κo) = a

)
.

(
I

I + n

)a+δ
+

(
I

I + n

)a+δ (
n

κoz

)a+δ
.

(
I

I + n

)a+δ
+

1

za+δ
.

Now, we choose z(t) = κ2o. Then,(
I

I + n

)a+δ
=

(
κo(2m+ δ − 1)

κo(2m+ δ − 1) +Ktγκ1−γo − 2mκo

)a+δ
.
(κo
t

)γ(a+δ)
= o

(
1

za+δ

)
since a ≥ m ≥ 5 and δ ≥ 0.

Thus,

Pr

(
Dκo(t) ≤

n

κoz
| Sκo(t)− 2mκo ≥ n,Dκo(κo) = a

)
.

1

κ
2(m+δ)
o

.

A simple coupling argument shows that Dκo(t) is stochastically dominated by
Di(t) for any i ∈ [κo]. Therefore, taking the union bound over [κo] we get

κo
κ
2(m+δ)
o

= o(1) since a ≥ m ≥ 5 and δ ≥ 0. ut
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5 Convergence of the majority dynamics

In this section we show that the system converges to the initial majority opinion
and bound the time it takes. Informally, Lemma 6 shows convergence for a tree
when the bias away from 1/2 is large enough, Lemma 7 demonstrates for vertices
outside the outer core, it only takes a constant number of steps for the probability
of being red to get below the bias threshold that Lemma 6 requires. It also uses
the fact that vertices in this range are almost tree-like. The conclusion is that
there is a certain contiguous set of steps when all the vertices outside the outer
core are blue. Finally, Lemma 8 shows that when this happens, the vertices in
the outer core are all blue. Since there is a time step in which all vertices are
blue, the graph remains blue thereafter.

For real p and integer n > 3 define

f(n, p) =

[(
1 +

1√
n− 1

)
2

] 2
n−3

4p(1− p). (1)

The following lemma was essentially first proved by the first author in [1]. Due
to space restrictions, we give an informal overview here and leave the full proof
in the appendix.

Lemma 6. Let Tu(h, d+) be a depth-h tree rooted at u where all non-leaf ver-
tices have degree at least d+ ≥ 5 odd. Let p ∈ (0, 12 ), k ≥ 5 and d = k ∧ d+.
Suppose at time τ = 0 each vertex of Tu(h, d+) is assigned red with probability
p. Under MPk the probability that the root u is red at time step h is at most
1
4 (f(d, p))(

d−1
2 )

h

.

Proof (Overview). Suppose instead ofMPk we had a modified versionMMPk
on the tree in which each vertex other than the root u assumes its parent is red.
Under the same sequence of random choices of which neighbours to poll,MMPk
can only make it more likely that u ends up being red at time step τ = h. It also
has the advantage of breaking dependencies between vertices at the same depth
in the tree. Denoting pτ (v) the probability of vertex v being red at time step τ ,
we show that under MMPk, we get p = p0(vh) > p1(vh−1) > . . . > ph−1(v1) >
ph(v0) where vi is a child of vi−1 in the tree and v0 = u. In fact, the sequence of

probabilities decays very rapidly, and we find that ph(v0) < 1
4 (f(d, p))(

d−1
2 )

h

.
ut

Lemma 7. Let k ≥ 5 be odd and let d = m ∧ k if m is odd and d = (m −
1) ∧ k if m is even. Let ε be any positive constant, let τ∗ = B logd logd t where
B = B(d, ε) = 1+ε

logd( d−1
2 )

and let α∗ be the smallest positive solution for x in

the equation Pr
(
Bin(d− 1, x) ≥ d−1

2

)
= x. If each vertex in PAt(m, δ) is red

independently with probability α < α∗, then whp under MPk every vertex v ∈
[t] \ [ko] is blue at time steps τ = τ∗ + 1, τ∗ + 2.
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Proof. Let integer n ≥ 2, f(x) = Pr (Bin(2n, x) ≥ n) and g(x) = f(x)− x. Ob-
serve g(0) = 0 and g(1/2) > 0. Furthermore, g′(x) =

(
2n
n

)
nxn−1(1 − x)n − 1,

whence g′(0) = −1. Therefore g(x) has a root x∗ in (0, 1/2). Now g
′′
(x) =(

2n
n

)
nxn−2(1− x)n−1 [(n− 1)− x(2n− 1)] which is strictly positive on 0 < x <

1
2 −

1
2(2n−1) and non-positive on 1

2 −
1

2(2n−1) ≤ x < 1. We can therefore de-

duce that x∗ is the unique root of g(x) in (0, 1/2), and that for the interval
[c1, c2] where 0 < c1 < c2 < x∗, g attains a maximum at c1 or c2. Hence,
for a given x ∈ [c1, c2], we have 0 < f(x) < x and x − f(x) = −g(x) >
−max{g(c1), g(c2)} > 0. Therefore, we need only a constant number of iter-
ations of f until f(f(. . . f(x)) . . .) < c1. When 2n = d− 1, we write α∗ = x∗.

Now consider a rooted tree of depth h where non-leave vertices have 2n = d −
1 children, and suppose that each vertex is coloured red independently with
probability α < α∗ at time τ = 0. By the same argument as in the proof of
Lemma 6, at time τ = 1 the depth h − 1 vertices are red independently with
probability f(α) < α − c2. Continuing in this way, the probability the root is
red is at most c1 if h > c3 where c3 is a large enough finite constant.

Let τ ′ = τ∗ − c3 and suppose that B(v, ω) is a tree. Since ω = A log log t with
A arbitrarily large, then we may assume ω = a logd logd t where a is a constant
such that ω ≥ τ∗ + 3. This means B(w, τ∗) is a tree if w is a neighbour of v or
v itself. By the above, we may therefore assume that at time t = c3, the depth
τ∗ − c3 = τ ′ vertices are red independently with probability at most c1.

Then by Lemma 6 the probability v is red at time step τ∗ is at most 1
4f(d, c1)(

d−1
2 )

τ′

.

For large enough t, τ ′ ≥ 1+ε/2

logd( d−1
2 )

logd logd t, therefore

(
d− 1

2

)τ ′
≥
(
d− 1

2

) 1+ε/2

logd( d−1
2 )

logd logd t

= d(1+ε/2) logd logd t = (logd t)
1+ε/2.

Thus,

f(d, c1)(
d−1
2 )

τ′

≤ d− logd

(
1

f(d,c1)

)
(logd t)

1+ε/2

= t
− logd

(
1

f(d,c1)

)
(logd t)

ε/2

.

If f(d, c1) < β < 1 where β is a constant then the above is at most t−(logd t)
ε/4

when t is large enough. By the same logic, and since each of the children of v are
also trees out to distance τ∗, the the same probability bound applies to them.
Thus, taking the union bound, we see that all vertices v such that B(v, ω) is a
tree are blue at times τ∗, τ∗ + 1, τ∗ + 2.

We extend the above to other vertices outside [κo]. From Corollary 1, we see
that v always has at most two “bad” edges that it can assume are always red.
Since m ≥ 5, this leaves m−2 ≥ 3 “good” edges which, if they are blue, will out-
vote the bad edges, regardless of what their actual colours are. Thus, suppose
e1 = (v, w1), . . . , em−2 = (v, wm−2) are good edges. As per the proof of Lemma 6,
the random variables Yτ (wi) for i ∈ {1, . . . ,m − 2} depend only on vertices in
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the subtree of B̃(v, ω) for which wi is a root. This is a depth–(ω− 1) tree where
each vertex not a leaf nor root has at least m−1 children. Since we may assume
that ω ≥ τ∗ + 2, it follows by the above that whp, all such wi are blue at time
steps τ∗, τ∗+ 1, τ∗+ 2. This forces v to be blue at time steps τ∗+ 1, τ∗+ 2, τ∗+ 3.
Thus, we have proved that whp, all vertices v ∈ [t] \ [κo] are blue at time steps
τ∗ + 1, τ∗ + 2. ut

It remains to consider the vertices in [κo]:

Lemma 8. If every vertex in v ∈ [t] \ [κo] is blue at time step τ∗+ 1, then whp
every v ∈ [κo] is blue at time step τ∗ + 2.

Proof. Consider a vertex v ∈ [κo]. We partition v’s set of incident edges Ev
in PAt(m, δ) into two sets Ev1 = {(v, w) : w ∈ [κo]} and Ev2 = Ev \ Ev1.

Clearly, |Ev1| ≤ mκo, so by Lemma 5, we may assume that |Ev2| ≥
(
t
κo

)γ
1
κ2
o
−

mκo for every v ∈ [κ0]. Consequently, the probability that at time step τ∗ + 1
the majority of edges picked by v are in Ev1 is zero if d ≥ 2|Ev1| + 1 and

O
(
Pr
(

Bin(d,
κ4
o

t ) > d
2

))
= O

(
κ4o/t

)
if d ≤ 2|Ev1|. Taken over all vertices in

[κo] this is o(1). ut

Corollary 2. With high probability, PAt(m, δ) is entirely blue at all time steps
τ ≥ τ∗ + 2.

6 Conclusion and open problems

We have seen that with high probability, local majority dynamics on preferential
attachment graphs with power law exponent at least 3 very rapidly converges
to the initial majority when the initial distribution of red vs. blue opinions is
sufficiently biased away from equality. The speed of convergence is affected both
by the number of neighbours polled at each step as well structural parameters
of the graph, specifically, how many edges are added when a new vertex joins in
the construction process of the graph.

A natural next step would be to analyse the process for −m < δ < 0, which
generates graphs with power-law exponents between 2 and 3. These appear to
better reflect “real world” networks, but our experience suggests that structural
differences make the techniques of this paper ineffective in this regime.

Another direction would be to explore how adversarial placements of opinions
affects outcome, as studied in [8] for random regular graphs.
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7 Appendix

Proposition 2. Let N be a natural number and p ∈ (0, 12 ). Then

Pr (Bin(2N, p) ≥ N) ≥ Pr (Bin(2N + 2, p) ≥ N + 1) .

Proof. LetX and Y be independent random variables with distributions Bin(2N, p)
and Bin(2, p) respectively, and let Z = X + Y . Then 1{X≥N} = 1{Z≥N+1}
except when X = N and Y = 0, or X = N − 1 and Y = 2. The for-
mer case occurs with probability pa =

(
2N
N

)
pN (1 − p)N+2 and the latter with

pb =
(

2N
N−1

)
pN+1(1 − p)N+1. Observe pa ≥ pb if and only if p ≤ N+1

2N+1 , which is

always the case when p < 1
2 .

http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html
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Proof of Lemma 1 continued Now consider a pair of cycles (a1, . . . , ar) and
(b1, . . . , bs) that share a single vertex a1 = b = 1, and where 1 ≤ r, s ≤ 2ω + 1.
Applying Proposition 1, the expected number of such structures lying entirely
in [t] \ [κ] is bounded by

2ω+1∑
r=1

2ω+1∑
s=1

∑
κ<a1,...,ar

∑
κ<b2,...,bs

Mr+s

(a1)2

r∏
i=2

1

ai

s∏
j=2

1

bj

.

(∫ t

κ

x−2 dx

) 2ω+1∑
r=1

2ω+1∑
s=1

(M log t)r+s

.
(log t)5ω

κ
= o(1).

Finally, consider a cycle a1, . . . , ar and a connecting path b0, . . . , b` where 1 ≤
r, ` ≤ 2ω + 1. Setting b0 = a1 and b` = ax where ax varies over the other r − 1
vertices of the cycle, the expected number of such structures lying entirely in
[t] \ [κ] is at most

2ω+1∑
r=1

2ω+1∑
`=1

∑
κ<a1,...,ar

∑
κ<b1,...,b`

r∑
x=1

Mr+`

(a1ax)3/2

r∏
i=2
i6=x

1

ai

`−1∏
i=1

1

bj
.

(log t)5ω

κ
= o(1).

ut

Proof of Lemma 2 continued (ii) Suppose the cycle in question (which may
be a self-loop or a pair of parallel edges with another vertex) has length r and
the path has length `. Without loss of generality, assuming a1 = b0 = v, the
expected number of such structures is bounded from above by

κ

2ω+1∑
r=1

ω∑
`=1

∑
κ<a1,...,ar

∑
κ<b1,...,b`−1

Mr+`

v3/2

r∏
i=2

1

ai

`−1∏
j=1

1

bj
.
κ(M log t)4ω

v3/2
.

Summing over all v > κ0 this is O
(
κ(M log t)4ω

κ
1/2
o

)
= o(1).

(iii) Suppose v has two edges e1, e2 on short paths into [κ] and that neither
is on P . By similar reasoning to part (i), there is a minimal structure S with
light vertices a1, . . . , ar where r ≤ 5ω, with at most 5ω edges and where each
light vertex has at least edges. Applying Proposition 1, the expected number of
structures S for a given v is asymptotically bounded from above by

κ2M5ω
5ω∑
r=1

∑
κ<a1,...,ar

1

v3/2

r∏
i=1

1

ai
.

5ωκ2(M log t)5ω

v3/2
.

Summing over all v > κ0 this is O
(
κ(M log t)4ω

κ
1/2
o

)
= o(1). ut
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Proof of Lemma 6

Let Nv(τ) be the (random) set of neighbours of v selected at time step τ . Let
dv(k) be the minimum between k and the largest odd number not larger the
degree of v. Observe |Nv(τ)| = dv(k) ≥ d. For v 6= u, define Par(v) to be the
parent of v in Tu(h, d).

We define the indicator random variables X0(v) = Y0(v) = 1 if and only if vertex
v is coloured blue at time τ = 0, and for τ > 0,

Xτ (v) = 1{(∑w∈Nv(τ)Xτ−1(w))> |Nv(τ)|
2 }

for all v, and

Yτ (v) = 1{(∑w∈Nv(τ)\{Par(v)} Yτ−1(w))> |Nv(τ)|
2 }

for all v 6= u. Thus, Xτ (v) represent the outcome underMPk and Yτ (v) is blue
if and only if the number of blue children forms the majority.

Observe Yτ (v) ≤ Xτ (v) for all v and τ ≥ 0, for suppose it is the case for τ − 1,
then

Yτ (v) = 1{(∑w∈Nv(τ)\{Par(v)} Yτ−1(w))> |Nv(τ)|
2 } ≤ 1{(∑w∈Nv(τ)\{Par(v)}Xτ−1(w))> |Nv(τ)|

2 }
≤ 1{(∑w∈Nv(τ)Xτ−1(w))> |Nv(τ)|

2 } = Xτ (v).

Let pτ (v) = Pr (Yτ (v) = 0).

We will show that p = p0(vh) > p1(vh−1) > . . . > ph−1(v1) > ph(v0) where vi
is a child of vi−1 in the tree and v0 = u. In fact, the sequence of probabilities
decays doubly-exponentially, with the implication that taking a union bound
over many trees will still result in a value that is o(1).

Consider a vertex v at depth h − 1. Its children are leaves which are coloured
red at time τ = 0 independently with probability p. Therefore,

p1(v) ≤ Pr

(
Bin(dv(k)− 1, p) ≥ dv(k)− 1

2

)
≤ Pr

(
Bin(d− 1, p) ≥ d− 1

2

)
where the second inequality follows by Proposition 2 (see appendix).

Since p < 1
2 ,

p1(v) ≤
d−1∑
i= d−1

2

(
d− 1

i

)
pi(1− p)d−1−i ≤ p

d−1
2 (1− p)

d−1
2

d−1∑
i= d−1

2

(
d− 1

i

)

= p
d−1
2 (1− p)

d−1
2

(
1

2
2d−1 +

1

2

(
d− 1
d−1
2

))
.

Using the inequality
(
2n
n

)
≤ 22n√

2n
, we have p1(v) ≤ 1

2 (1 + 1√
d−1 )(4p(1− p)) d−1

2 .
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Let D(x) denote the depth of a vertex x, i.e., its distance from u in the tree.
Observe that {Y1(v) : D(v) = h − 1}, {Y2(v) : D(v) = h − 2}, . . . , {Yh−1(v) :
D(v) = 1} are sets of independent random variables.

Suppose that at τ < h the following inequality held for all v such that D(v) =
h− τ :

pτ (v) ≤ 1

4

[(
1 +

1√
d− 1

)
2

]∑τ−1
i=0 ( d−1

2 )
i

(4p(1− p))(
d−1
2 )

τ

<
1

2
,

and define pτ to be the RHS of the above inequality. Then for τ + 1 and all v
such that D(v) = h− t− 1,

pτ+1(v) ≤
d−1∑
i= d−1

2

(
d− 1

i

)
piτ (1− pτ )d−1−i

≤ 1

2

(
1 +

1√
d− 1

)
(4pτ (1− pτ ))

d−1
2

≤ 1

2

(
1 +

1√
d− 1

)
(4pτ )

d−1
2

≤ 1

2

(
1 +

1√
d− 1

)[(1 +
1√
d− 1

)
2

]∑τ−1
i=0 ( d−1

2 )
i

(4p(1− p))(
d−1
2 )

τ


d−1
2

=
1

4

[(
1 +

1√
d− 1

)
2

]∑τ
i=0(

d−1
2 )

i

(4p(1− p))(
d−1
2 )

τ+1

= pτ+1.

Hence, for τ ≤ h, and all v such that D(v) = h− τ , we have

pτ (v) ≤ 1

4

([(
1 +

1√
d− 1

)
2

] 2
d−3

4p(1− p)

)( d−1
2 )

τ

=
1

4
(f(d, p))(

d−1
2 )

τ

.

ut
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